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Abstract

This thesis is about model checking testing models. These testing models are used during the
automated testing of software systems and encode symbolic transition systems that are necessarily
open. Open models need to be closed before they can be model checked by LTSmin. The open
models are closed by the automatic generation and insertion of an environment process. They
are then translated to DVE and model checked. The model closing algorithm does preserve the
verifiable properties for the models that it can close, but cannot deal with models that have an
infinitely large underlying labeled transition system. Future research is suggested to deal with this
issue.
Keywords: model checking, closing open models, symbolic transition systems, labeled transition systems,
Kripke structures, LTL, LTSmin, Ruby, automated testing, software development
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Chapter 1

Introduction

Axini is a young company that has specialized itself in a novel approach to the problem of soft-
ware testing. This approach is called model-based testing. Software testing is an intrinsic part of
software development where one checks whether the developed software actually conforms to its
requirements. This task is necessary to ensure that the final software product can be accepted
by the project stakeholders. A practical approach to software testing is to actively search for er-
roneous behavior [43]; one could try entering a suspicious input sequence and verify whether the
output is still correct. Generally speaking, as the number of these attempts increases, so will the
confidence in the correctness of the software increase [58]. The software product can be delivered
to the stakeholders once this confidence has become sufficiently strong.

However, “program testing can be used to show the presence of bugs, but never to show their
absence” [23]; something other than testing is necessary to be completely sure that the program is
free of errors. To obtain such a definite answer, one might have to resort to formal methods and
model checking in particular. This project is about enabling model checking for Axini, but not for
verifying the correctness of the software. Rather, this project will allow Axini to model check the
models that they use in their approach to software testing.

The rest of this chapter introduces the important concepts that were previously briefly men-
tioned, and finally describe how model checking can be a valuable tool for Axini in testing software
correctness. Furthermore, this chapter contains a list of the project goals and finally describes the
remaining contents of this thesis.

1.1 Axini and Model-based Testing
TestManager is an application that is created and maintained by Axini and that enables the
automatic testing of software systems. A system that is being tested by TestManager is referred
to as a System Under Test (SUT). TestManager’s approach to automated testing is through
black-box model-based functionality testing and a general overview of this approach is shown
in figure 1.1. A user makes the implementation (the SUT) and a specification (the test model)
available to TestManager. TestManager then derives a test suite from the specification and
executes the test cases in the suite on the implementation. The result is a verdict on how well
the implementation conforms to the specification [54, 52]. If one of the generated test cases failed,
then the behavioral trace that led to the violation is shown to the user. He can then reproduce
the offending behavior.

Model-based testing is a specific form of automated testing. Normally, automated testing only
refers to the automatic execution of tests and sometimes also to the automatic analysis of test
results [52]. In these cases, the test scenarios have to be manually written in a low-level tool-
specific language. However, model-based testing not only includes both automatic test execution
and automatic result analysis, but also the automatic generation of executable test cases. This
approach has many benefits over other forms of software testing. The manual construction and
maintenance of the specification requires less effort than the manual construction and maintenance
of the individual test cases. Model-based testing also allows a much larger coverage of the SUT by
being able to produce and test a significantly higher number of test cases than what could possibly
be done manually.

For TestManager, a specification or testing model is a functional description of the require-
ments written in a language called Axini Modeling Language (AML), but is more often referred to
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Figure 1.1: Overview of model-based testing, taken from [54]

as STS. This description lists the observable actions that the SUT can make along with the control
structures that dictate which actions can be emitted in response to which stimuli, in what order
and under what conditions. Appendix A gives a short overview of this language and this thesis
uses this modelling language to define some example models.

A major issue with model-based testing is the problem of correctness. If the specification
isn’t correct with respect to the requirements, then any model-based test case based upon this
specification may declare valid behavior to be incorrect, or worse, may fail to recognize invalid
behavior as such when that behavior is emitted by the SUT. If the system requirements could be
expressed formally, then a formal method may show that the test model is correct with respect to
these formalized requirements. Model checking may be such a method.

1.2 Model checking
Model checking is a technique that can check whether a Kripke structure, or something that can be
reduced to such a structure, is a model for a formula that is expressed in a temporal logic [15, 47].
A model checker translates a system that is normally specified in a high-level formalism to a Kripke
structure; accepts a property specified in a temporal logic and then checks if the structure is a
model of the property, or rather, if the property holds within the structure. It also produces a
counterexample if it turned out that the structure wasn’t a model for the property. The properties
that can be checked can be grouped into two categories: safety properties and liveness properties.
Safety properties specify that “nothing bad will ever happen”, e.g. the system will not halt and will
never acquire an undesired property. Liveness properties are used to show that “something good
will happen eventually”, e.g. the system will always accept input and will always respond to input
[3].

An important application of model checking is the verification of communication protocols
[25, 15]. The approach itself was first proposed by Clarke and Emerson while they were researching
the synthesis of valid communication protocols from temporal logic formulas [16]. They first
proposed the generation of a synchronization skeleton which could be easily extended to an actual
implementation of the communication protocol that would be correct with respect to the original
properties. However, during this research, they realized that the problem of checking models was
much more important than the problem of synthesizing correct programs. Independently from
Clarke and Emerson, Sifakis et al. had also invented model checking and presented their model
checker CESAR in 1982 [47]. In 2007, Clarke, Emerson and Sifakis received the Turing Award for
their invention of model checking.

Model checking is not the only formal method that can be used to verify whether a system
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is correct. Before model checking was invented, systems often had to be verified by the manual
construction of proofs, using e.g. the Floyd-Hoare framework that allowed proving total correctness
and termination of functional programs [25]. Applying these techniques to real-world programs
was very difficult as these programs weren’t necessarily functional, or didn’t need to terminate
at all [15]. In 1977, Pnuelli suggested a formalism to be used during manual proof construction
that could unify the verification of sequential and concurrent programs [46]. His formalism allowed
reasoning on both invariants (properties that didn’t change through the program execution) and
eventuality (statements that would become true during every possible execution). Model checking
accepted this formalism as a method for expression temporal properties. Manually proving program
correctness is still being done, and has been partially automated by term rewriting systems and
proof checkers. However, these approaches still require significant user intervention and human
ingenuity [20].

While model checking may be a fully automatic approach, it is effectively a brute-force solution
to the problem of program verification. The most telling symptom of this is the combinatorial
state space explosion that will occur whenever the model checker tries to check certain non-trivial
systems. The phenomenon arises because the size of the underlying Kripke structure grows expo-
nentially to the size of the system [17]. For non-trivial systems, the Kripke structure may even be
too large to be stored in computer memory. However, the state space does not need to be stored
explicitly, where each state is stored as an individual entity. States can also be stored implicitly
or symbolically, where the entire state space is stored as e.g. a binary or multi-valued decision
diagram [11, 13]. In 2001, Ciardo et al. reported that they were able to store the entire state space
of a model with approximately 10627 states within 390KB of memory [14].

Currently, several model checkers are freely available as open source. SPIN is one of the
most popular and powerful model checkers and has been successfully applied to several significant
industrial test cases1 [34]. Some model checkers are designed to only check for specific types of
systems, e.g. Uppaal is designed to verify systems that can be modelled as a collection of timed
automata [5] and Mocha can verify systems that are reactive or open [2]. Some of these are overtly
academical in nature; they are rarely updated, not fully optimized and only seem to serve as case
studies.

This project uses the model checker LTSmin [41, 9]. LTSmin is a model checker that has
been specifically designed to be modular in such a fashion that it can accept multiple specification
languages and offer each of these languages more or less the same state space optimizations and
property verification algorithms. Most of these algorithms are also designed to be high-performance
and can distribute their workload over multiple machines. LTSmin supports some of the popular
model specification languages such as Promela, which was originally designed for SPIN; Uppaal,
DVE and mCRL2. This feature gives the user the freedom to switch over to, or from, LTSmin
without having to rewrite his models to a different specification language.

1.3 Model checking test models
This project is about enabling Axini to model check its STS models. Axini can then formally
determine whether its model satisfy the system requirements by converting those requirements
to formulas of temporal logic and having a model checker check whether the underlying Kripke
structure is a model for these formulas. As this process is relatively fast and can be fully automated,
model checking can be used during the development of the model to verify the correctness with
respect to the SUT requirements. This may decrease the effort that is needed to construct a correct
model. Model checking can therefor be useful addition to the existing Axini workflow.

Research Question 1. Can we model check STS models?

Unfortunately, there is no model checker that can accept models written in the STS language. A
solution to this problem is not trivial. Most model checkers only accept closed models for checking,
but the models used by TestManager are open and necessarily so. Existing model checkers that
do support open models, such as Mocha, support too few features to be of good use. To bridge
this gap and allow Axini to model check their models, this project had to research and construct
a method for closing open models.

Research Question 2. How can an open model be properly closed?
1http://spinroot.com/spin/success.html
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During the course of this project, a prototype was developed that will allow some STS models
to be model checked. This model uses code that was developed by Axini to parse the STS models,
and closes them by inserting a finite process that represents the maximum environment. This new
environment only sends the messages that are needed to retain the behavior of the original model
and is in this sense a minimal representation. The model checking is done by LTSmin and the
closed STS models are translated to DVE so that LTSmin can access the model. Not all models can
be closed. Models that use datatypes other than integers are currently not supported, but future
support for such models is discussed later within this thesis. Models that have an infinitely large
underlying Kripke structure are also not supported. Again, future work to deal with such models
is discussed later on. While these limitations diminish the outcome of this project, we would like
to highlight that the prototype is designed to produce only correct results for the models that fall
within the scope. That is: the applied model normalizations, model closing and DVE translation
algorithms are designed to retain the LTL-expressible model properties so that no false-negative
or false-positive results can be generated. Nonetheless, the prototype is currently not capable of
handling most models that are developed and used by Axini.

1.4 Document structure
The next three chapters describe the context: chapter 2 introduces some theoretical constructs that
are useful for understanding the chapters that follow it, while 3 and 4 discusses the two separate
domains that this project intends to connect: Axini’s approach to automated testing, and model
checking. The prototype is examined in chapter 5. This chapter starts with an explanation of the
important decisions that were made, followed by an in-depth discussion of the methods of model
minimizing, model closing and DVE translation. The following chapter, 6 contains an elaboration
of the test results as well as a listing of all products that were delivered for this project. An
evaluation of the research goals and the prototype, along with its limitations and the future work
necessary for the success of this prototype, is given in chapter 7. Finally, this thesis is wrapped up
with the conclusion in chapter 8.

Added to this document are three appendices. Appendix A gives an overview of the STS

language in which many of the example models in this thesis are specified. Appendix B lists
several models for which the model checker produced correct results, as is discussed in chapter 6.
Lastly, appendix C is a suggested task assignment for the next intern or Axini employee who will
continue this project.
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Chapter 2

Background

This chapter gives a background for the concepts that are discussed later on in this thesis. The
focus is placed on the concepts that are related to model checking. We discuss transition systems,
temporal logics and verifiable properties. In the final section 2.4, we will give some examples of
Kripke structures and discuss some of their LTL-expressible properties.

2.1 Models
The models that are considered in this chapter are mathematical constructs that can be expressed
as graphs. In this section, we review three types of models: a) symbolic transition systems, which
the STS models are evaluated to; b) labeled transition systems, which label edges with events; and
c) Kripke structures, which label vertices with atomic propositions.

Model checking algorithms are normally specified for Kripke structures. To model check an STS

model, it will have to be transformed to such a structure first. Interpreting a symbolic transition
system to a labeled transition system is an important step in that transformation, as Kripke
structures and labeled transition systems are relatively interchangeable [44].

Definition 1 (Kripke Structure). A Kripke structure over a set of atomic propositions AP is a
tuple K = ⟨S, R, L, I⟩ where S is the set of states, R ⊆ S2 is the set of transitions, I ⊆ S is the
nonempty set of initial states, and L ∶ S → 2AP labels each state by a set of atomic propositions
[17].

Figure 2.1 contains a visual representation of the Kripke structure
⟨{a, b, c},{(a, b), (b, c), (c, c)},{a ↦ {p}, b ↦ {p, q}, c ↦ {q}},{a}⟩, with AP = {p, q}. A for-
mal verification of the formulas that are constructed from the elements in AP involves an
inspection of the labeled states and their relationships with each other. Model checking is such a
technique and is discussed extensively in chapter 4.

Figure 2.1: A small Kripke structure.

We do not discuss the transformation of a labeled transition system to a Kripke structure.
For a discussion on that subject, see [28, 29]. However, we do wish to mention that, as will be
described later on in this section, the interpretation of a symbolic transition system generates a
labeled transition system with states that contain valuations for the variables of the interpreted
sts. The Kripke labeling function L can use this valuation to determine for each state the relevant
atomic propositions.

The remainder of this section gives some important definitions that are applicable to Kripke
structures but also to the other two types of models. After that, we introduce symbolic and labeled
transition systems, discuss the decoding of an STS model to a symbolic transition system, and the
interpretation of the symbolic transition system to a labeled transition system.
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States are connected to each other through transitions, which are directed edges. Transitions
can connect at most two distinct states to each other. The state from which a transition departs
and the state that it arrives at are its origin and destination respectively. A state can have a
non-negative number of transitions that depart from it. This number is the outdegree of that state.

Following is the definition of a path through a Kripke structure, it has been adapted from [3].

Definition 2 (Path in a Kripke structure). A finite path fragment π̂ through a Kripke structure
K = ⟨S, R, L, I⟩ is a finite state sequence s0, s1, ..., sn such that for all 0 ≤ i < n, (si, si+1) ∈ R. An
infinite path fragment π is an infinite state sequence s0, s1, ... such that (si, si+1) ∈ R for all i ≥ 0.
An initial path fragment π = s0, s1, ... is a path fragment with s0 ∈ I. A maximal path fragment is
said to be either an infinite path fragment, or a path fragment that ends in a state with outdegree
0, i.e. a terminal state. Finally, a path is a maximum initial path fragment.

A Kripke structure contains a cycle if there is a finite path fragment s0, ..., sk with k > 0 and
s0 = sk. Furthermore, if π̂ = s0, s1, ..., sk is a finite path fragment, then sk can be reached from all
states in {s0, s1, ..., sk−1}. More specifically, a state s is said to be reachable when it can be reached
from a state s0 ∈ I. For a path π we will use ∣π∣ to denote the length of the path, with ∣π∣ = n for
some n ∈ N>0 if the path is of finite length, and ∣π∣ =∞ otherwise.

2.1.1 STS to Symbolic Transition System
Symbolic transition systems were introduced by Frantzen et al. as a more powerful abstraction
of labeled transition systems [28]. The labeled transition system (def. 4) is extended with data
variables, and data-dependent control flow in the form of guards that can be placed on transitions.

Definition 3 (Symbolic Transition System). A Symbolic Transition System is a tuple
⟨L, l0,V, ι,I,Λ,→⟩, where: [28]

• L is a countable set of locations and l0 ∈ L is the initial location.

• V is a countable set of location variables.

• ι ∈ T(∅)V is an initialization of the location variables.

• I is a set of interaction variables, disjoint from V.

• Λ is a finite set of gates. The unobservable gate is denoted τ (τ ∉ Λ); we write Λτ for
Λ ∪ {τ}. The arity of a gate λ ∈ Λτ , denoted arity(λ), is a natural number. The type of a
gate λ ∈ Λτ , denoted type(λ), is a tuple of length arity(λ) of distinct interaction variables.
We fix arity(τ) = 0, i.e. the unobservable gate has no interaction variables.

• → ⊆ L×Λτ ×F(V ∪ I)×T(V ∪ I)V ×L is the switch relation. We write l
λ,φ,ρÐÐÐÐ→ l′ instead of

(l, λ, φ, ρ, l′) ∈ →, where φ is referred to as the constraint (acting as guard) and ρ as the
update mapping. We require free(φ) ∪ var(ρ) ⊆ V ∪ type(λ).

For a set X of variables, the set of terms constructed from the elements in X is denoted T(X).
The elements t ∈ T(∅) are ground terms. For sets of variables X,Y T(Y )X denotes the set of term
mappings where each term mapping ρ ∈ T(Y )X assigns to every element x ∈ X a term t ∈ T(Y ),
and for every x ∉ X the term x. Here, T(∅)V is the set of all term mappings that each assign to
all elements in V a ground term, and T(V ∪ I)V the set of all term mappings that each assign to
all elements in V a term constructed from the variables in V ∪ I. Furthermore, F(V ∪ I) is the set
of all first order formulas constructed from the location and interaction variables. Finally, var(φ)
and free(φ) denote for a first order formula φ the set of variables and the set of free variables that
appear in φ respectively.

The previous definition of paths (def. 2) was given in the context of a Kripke structure. This
definition can be applied to Symbolic Transition Systems if we make the following adaptations. For
a symbolic transition system, a possibly infinite path fragment π = l0, l1, ... consists of a sequence
of locations where for every non-terminal location li in such a sequence, there exists a switch
li

λ,φ,ρÐÐÐÐ→ li+1 for which the finite path fragment l0, ..., li enables a valuation of the values in V ∪ I
to satisfy φ. To clarify that last point: if none of the path fragments that reach li can assign to
the variables in V ∪ I the values that satisfy φ, then the switch relation can never be taken and
paths that contain the locations li and li+1 consecutively can therefor not exist.

Informally speaking, a closed system is a system whose behavior is completely determined by
the state of the system [36]. If a closed system interacts with another system, then this external
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system cannot influence the behavior of the closed system: all decisions that influence the behavior
are made by the closed process and not by the environment. A definition that is more strict and
more relevant for this thesis, is that a closed system does not communicate with anything that is
not contained within the model.

The distinction between an open and a closed system is an important one; most publicly
available model checkers can only model check closed systems. Figure 2.2 shows a closed model
that consists of two separate transition systems, a coffee/tea dispenser and the user. The drink
dispenser first waits for a user to insert a coin and then, depending on the following decision made
by the user, prepares and dispenses either coffee or tea. This system is closed because there is no
pathway through the model in which something that is external to either the dispenser or the user,
could communicate with one of the two processes. If one of these processes were to be omitted,
then the model would be open. An open model can be closed by internalizing the relevant aspects
of its environment, as has been done by adding the user process in this specific case.

Figure 2.2: A closed model for a coffee/tea dispenser.

The decoding of an STS model to its corresponding symbolic transition system is mostly straight-
forward. The following list shows how the important STS structures map to their symbolic transi-
tion system counterparts.

• An STS model translates to a set of symbolic transition systems where each sts construct
encodes a single transition system. As individual systems act as processes, they are referred
to as such during the remainder of this thesis.

• The set of variables V is encoded by the var keyword.

• The set of gates Λ are defined by the response and stimulus keywords. To differentiate
between the gates of a process that transmits message a and those of a process that receives
it, the gates are renamed to a! and a? respectively. If the messages are valued, then the
interaction variables are placed into I.

• The initial location l0 is the origin of the transition that is encoded by the first behavioral
expression that follows the stimulus and response declarations. This location is named if
the state keyword appears on the line preceding the behavioral expression. The location
elements are referred to as states within the remaining chapters of this thesis.

• The elements of the set of locations L are automatically generated to connect the behavioral
expressions. Each unnamed location is identified by a string that is generated from its
sequence number. If the location is the nth unnamed location that is generated, then its
identifier is _n.

• A constraint expression with the first order logic formula φ ∈ F(V) that connects the
locations l and l′ is decoded to l

τ,φ,ρÐÐÐÐ→ l′, where ρ is a term mapping that maps every
location variable v ∈ V to the term v.
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Listing 2.1: STS model that models a simple slot-machine

external 'a_channel '

sts('process_a ') {

var 'count ', :integer , 0

channel('a_channel ') {

stimulus 'coin'

respone 'tray', {'_amount ' => :integer}

}

state 'start '

receive 'coin', { :update => 'count = count + 1;' }

choice {

o { send 'tray', :constraint => '_amount == count ',

:update => 'count = 0;' }

o { send 'tray', :constraint => '_amount == 0' }

}

goto 'start '

}

• An update expression contains a non-empty set of term mappings ρ ∈ T(V)X for a set of
variables X ⊆ V. If the expression connects the two locations l and l′, then it is decoded to
l

τ,⊺,ρÐÐÐÐ→ l′, where ⊺ denotes a tautology.

• Finally, the receive and send constructs map to the transition l
λ,φ,ρÐÐÐÐ→ l′ where λ ∈ Λ is

an observable gate (i.e. λ ≠ τ), φ ∈ F(V ∪ I) is the guard, and ρ ∈ T(V ∪ I)V is the update
statement. Furthermore, for every interaction variable i ∈ type(λ), i ∈ var(φ), that is: the
guard constraints the value of every interaction variable.

A simple example of an STS model is shown in listing 2.1. It models a slot-machine that can
communicate with a user through two gates. The user inserts a coin by sending coin, and then the
machine signals the outcome of its internal decision through the tray response. Its sts represen-
tation is ⟨{start, _0, _1, _2}, start, {count}, {count ↦ 0}, {_amount}, {coin, tray}, →⟩
where the → relation is shown in figure 2.3. In the strict sense, this system is open because it
communicates with an entity outside the model, but according to the more general definition, this
model is closed because an external agent cannot alter the behavior of this model; only the jackpot
decides whether it moves all of its stored coins to the tray.

Figure 2.3: State graph for the model in listing 2.1.
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2.1.2 Symbolic Transition System to Labeled Transition System
The conversion of a symbolic transition system to a labeled transition system is called an in-
terpretation of the symbolic system. We use the definitions from the paper by Frantzen et al.
[28].

Definition 4 (Labeled Transition System). A Labeled Transition System is a tuple L = ⟨S, s0,Σ,→⟩,
where:

• S is a (possibly infinite) set of states.

• s0 ∈ S is the initial state.

• Σ is a possibly infinite set of action labels. The special action τ ∉ Σ denotes an unobservable
action. In contrast, all other actions are observable. We write Στ to denote the set Σ ∪ {τ}.

• → ⊆ S ×Στ × S is the transition relation. When (s, µ, s′) ∈ → we write s
µÐÐ→ s′.

Definition 5 (STS Interpretation). Let S = ⟨L, l,V, ι,I,Λ,→⟩ be an STS. The interpretation of S
is given by the LTS ⟦S⟧ = ⟨S, s0, Σ, →⟩, where:

• S = L × UV is the set of states.

• s0 = (l0, eval ○ ι) ∈ S is the initial state.

• Σ = ⋃λ∈Λτ
({λ} × Uarity(λ)) is the set of actions.

• → ⊆ S ×Σ × S is the transition relation.

The transition relation → in ⟦S⟧ is generated according to a specific deduction rule. For this
rule, see the paper by Frantzen et al. [28]. To demonstrate how the interpretation of an STS
could result in an LTS with an infinite number of states, we use the slot-machine example that
was introduced in section 2.1.1.

Within an interpretation of an STS, a state is a pairing of a location with a valuation for all
the variables in V. This valuation needs to have been possible for that location. The slot-machine
model only has a single variable in V, count, and due to the nature of the model, count can store
all possible non-negative integers. Therefor, the general form of a state s ∈ S in ⟦S⟧ is (l, n) where
l ∈ L and n ∈ N. The set of actions Σ consists of the elements (τ), (coin) and (tray, n) for all
n ∈ N>0.

The initial section of the state graph of this model is shown in figure 2.4. As can be seen, ⟦S⟧
has an infinite number of states because the coin? transition can always be taken from any state
with location start and this transition will reach a state with a value for count that will be higher
than it was in all previous states.
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Figure 2.4: State graph for the LTS model ⟦S⟧.
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2.2 Temporal logic
Verifiable properties for Kripke structures are often expressed within a temporal logic. Such logics
enable the specification of formulas over the set of atomic propositions AP and can be used to
express properties over the reachable states and over the traversable paths that exist within a
Kripke structure. They are called temporal because they incorporate a concept of time; as the
traversal of a path can be interpreted as the passing of time, states along such a path can signify
the way in which a system changes as time progresses. A proposition that is expressed in a temporal
logic can therefor state something about the future of a system, in addition to stating propositions
about individual states.

There are two important distinct ways to look at time: there is either only one possible future,
or there can be multiple distinct futures from any given state [27]. These are often referred to
as linear and branching time respectively. In his paper “Sometime” is Sometimes “Not Never”,
Lamport has tried to show that these two paradigms give rise to two fundamentally different
expressive powers by using a small temporal logic to define a certain proposition for a specific
model and subsequently showing that depending on the perspective, the proposition will either fail
or not for that specific model [42].

This troublesome proposition declared that a certain atomic predicate p ∈ AP is not always not
false, or φ = ¬◻¬p. A linear interpretation of this proposition states that for every possible future
there is a state at which p will be not be false, denoted in Lamport’s logic as →p or “p will eventually
become true”. However, from a branching perspective there are two separate circumstances in which
this property holds: a) either p will eventually become true in all possible paths, or b) there exists
at least one path in which p will become true. For a model of the latter type that additionally
has a single path in which p won’t become true, φ will fail from a linear perspective, but not
from a branching perspective. Conclusively, the expressive powers of linear and branching time
are different.

It is now commonly suggested that linear logic and branching logic refer to different elements of
a Kripke structure; propositions of the former can be used to express properties about paths, while
those of the latter are for expressing properties about individual states. In a response to Lamport’s
paper, Emerson and Halpern defined the temporal logic CTL* which subsumes both linear and
branching logics [27, 18]. Within CTL* there are state formulas and path formulas and those of
the former type can be used to express branching properties, e.g. that from the perspective of a
specific state, there is a future in which something happens, and an alternative future in which it
doesn’t.

In the remainder of this section, we focus on the linear temporal logic LTL. This logic was
initially proposed by Pnuelli in [46]. The reason why we focus on LTL and not on e.g. CTL, is
because LTL is more expressive than CTL in the sense that its semantics are more intuitive and
its formulas more easy to specify [58]. Furthermore, the selected model checker LTSmin seems to
have a stronger support for properties that are expressed in LTL and less for those expressed in
CTL. In the next section we show how LTL can be used to express some important properties.
The following definition has been adapted from previous work by Vardi [57].

Before we define LTL, we first introduce the following notation. For a path π (def. 2) within
a Kripke structure K = ⟨S, R, L, I⟩, πi with 0 ≤ i < ∣π∣ indicates the ith state along the path
with π0 always being an initial state i.e. π0 ∈ I. Consequently, L(πi) denotes the set of atomic
propositions that are true at the ith state of the path.

Definition 6 (LTL formula). A linear time propositional logic formula is built from the set AP
of atomic propositions and is interpreted over a path π. The set of LTL formulas that holds for π
and its states is generated according to the following rules:

• πi ⊧ p for p ∈ AP iff p ∈ L(πi).

• πi ⊧ ξ ∧ ϕ iff πi ⊧ ξ and πi ⊧ ϕ.

• πi ⊧ ξ ∨ ϕ iff πi ⊧ ξ or πi ⊧ ϕ.

• πi ⊧ ¬φ iff not πi ⊧ φ.

• πi ⊧Xφ iff πi+1 ⊧ φ.

• πi ⊧ ξUϕ iff for some i ≤ j < ∣π∣, πj ⊧ ϕ and for all k, i ≤ k < j, we have πk ⊧ ξ.

• πi ⊧ ξRϕ iff ¬(¬ξU¬ϕ) [19].
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• πi ⊧ Fφ iff ⊺Uφ, where ⊺ denotes a tautology. This is the eventuality: “φ will eventually
hold.”

• πi ⊧ Gφ iff ¬F¬φ, or “φ will hold henceforth”.

• π ⊧ φ iff π0 ⊧ φ.

2.3 Properties
Formulas can be used to express interesting properties of models. There are two important prop-
erties that can be expressed with LTL:

• Safety properties, “no bad things will happen”. There are two important subcategories: invari-
ants and freedom from deadlocks [38]. A property is invariant if it holds for every reachable
state and a model is free from deadlocks if every reachable state has at least one successor.
Mutual exclusion is a common example of an invariant and can be expressed as G¬(p ∧ q) if
p were to mean that some process A is in its critical region, and q that some other process B
is in his. In general, a safety property is expressed in LTL as Gφ if φ represents for a single
state the absence of a “bad” property. Deadlock-freedom is normally not expressed in LTL,
and model checkers can use specialized algorithms to detect deadlocks. However, GX⊺ could
be a possible formula to express this, where ⊺ would denote a tautology.

• Liveness properties, “something good will always eventually happen”. These properties are
different from safety properties because they are not verified over individual states, but over
all possible futures that are reachable from such states. Liveness properties can be used to
express various forms of fairness (e.g. an inactive process cannot remain inactive forever) and
livelock-freedom (i.e. infinite runs must have progress infinitely often [38]). These formulas
are often expressed in LTL with the general form GFφ, where φ is a property that denotes
progress. For example, G(request → Fresponse) could state that whenever a system
receives a request, it will always eventually emit a response.

This categorization is useful because it outlines the different approaches that are required to
verify these properties [3, 39]. For example, to verify a safety property, it is sufficient to examine
each reachable state individually. However, to verify a liveness property, it it sometimes necessary
to examine all states that are reachable from that state. For a labeled transition system with an
infinite number of states, this verification might be undecidable. See chapter 4 for a more in-depth
discussion about verifying these properties.

There are two types of deadlocks that are particularly relevant to this thesis. They are explicit
and implicit deadlocks and refer to those that are part of the symbolic transition system and those
that emerge during the interpretation of such a symbolic transition system respectively. A symbolic
transition system S = ⟨L, l0,V, ι,I,Λ,→, ⟩ has an explicit deadlock when there is a location l ∈ L
with an outdegree of 0. It has an implicit deadlock if the interpretation ⟦S⟧ = ⟨S, s0,Σ,→⟩ contains
a state s ∈ S with s = ⟨l,u1,u2, ...un⟩ that has an outdegree of 0, but the corresponding location
l ∈ L has an outdegree that is non-zero.

2.4 Examples
The Kripke structure shown in figure 2.1 contains three states {a, b, c} and a single infinite path
π = a, b, c, c, .... If the absence of both p and q would be a “bad” property, then G¬(¬p ∧ ¬q), or
rather: G(p ∨ q), would be the corresponding safety property and π ⊧ G(p ∨ q) because all three
reachable states have either p, or q, or both. However, if p∧ q would indicate that two processes A
and B are in their critical region, then G¬(p ∧ q) would express the property of mutual exclusion.
In that case, π /⊧ G¬(p ∧ q) because b ⊧ p ∧ q.

Another interesting Kripke structure is shown in figure 2.5. This structure has two paths
π′ = a, b, b, ... and π′′ = a, c, c, ... which agree on some properties, but not on others. For example,
they both agree on G(p∨q), but not on Gp or Gq. However, even though p is true for all states that
are on path π′, it is important to mention that π′ /⊧ Gp. This is because from a linear perspective,
there is only one future, and so all futures that are possible from, e.g. the state a, should agree on
Gp, which they don’t. The final interesting Kripke structure is a finite one and is shown in figure
2.6. Its only path π = a, b, c halts in a terminal state, i.e. c has an outdegree of 0. This would
mean that this model has a deadlock, and so π /⊧ GX⊺.
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Furthermore, for all three models, we can define the eventuality Fq because either q is true
in the initial state, or q will become true in all future paths that are reachable from that initial
state. However, while the models in figures 2.1 and 2.6 agree on GFq, the one in figure 2.5 does
not because for state b in that model, b /⊧ Fp.

Figure 2.5: A Kripke structure with two separate paths

Figure 2.6: A Kripke structure with a single finite path
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Chapter 3

Axini’s TestManager

TestManager is the name of a testing framework that is used to verify the public behavior of a
system under test according to its behavioral requirements. To allow TestManager to recognize
incorrect behavior, a user supplies an STS model that defines the correct behavior. During the test,
TestManager interacts with the SUT by sending it messages and interpreting the responses. If
the received response was not conform to the STS model then TestManager may conclude that
the implemented system is in error.

Figure 3.1 shows the relation between the SUT, TestManager and the STS model. The
Adapter is a component that converts the actual communication of the SUT to and from the
abstract behavioral traces that are specified within the STS model.

Figure 3.1: An overview of the relation between the SUT, TestManager and the STS model

The STS model does not need to be a representation of how the SUT is implemented; the model
only needs to be a formalization of the correct behavior. It also does not need to account for all the
behavior that is specified by the requirements, or emitted by the implemented system; the behavior
that is generated by the STS model can be an underspecification of the requirements. This can be
done to focus testing on a specific subset of the required behavior.

TestManager communicates with the SUT through messages that are specified within the
STS model as those that are transmitted over external channels. Models whose behavior depend
on the messages they receive over external channels are referred to as open or reactive models.

The next section of this chapter contains a brief description of TestManager’s algorithm. It
is important to mention that TestManager only tests the system to a certain degree. It cannot
test all behavior of systems that are of non-trivial complexity. Section 3.2 contains a more in-depth
discussion of this issue.

3.1 TestManager algorithm
Underneath an STS model is a finite directed graph that represents a symbolic transition system.
This sts is assumed to have multiple states and multiple transitions linking them. Furthermore, it
is assumed that there is a single initial state and that each non-initial state within the sts is, either
directly or indirectly, reachable from that initial state. It is also assumed that the sts contains at
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least a single state with an outdegree > 1. Models without such states certainly are valid, but they
are not very interesting to test because they only have a single path through the graph, and thus
only a single behavioral sequence.

TestManager starts from the initial state and explores the graph while interacting with the
SUT. During this exploration, TestManager maintains a set of states. The future behavior of
the SUT is predicted by a path that leaves one of these states. Normally, TestManager only
keeps track of a single state and by examining the transitions that lead away from this single state,
it can determine whether it has to wait for a response from the SUT, or send it a message. However,
when there are two diverging transitions that lead away from this single state and both specify the
same interaction, then after this interaction has taken place, TestManager must expect either
of both possible futures. Listing 3.1 shows an STS fragment in which the behavioral sequence
[α!, β?] can be followed by either γ! or ϵ!. It won’t know what the SUT will actually send, as this
is apparently the outcome of an internal decision made by the SUT to which TestManager is
not privy.

Listing 3.1: STS fragment that accounts for an internal decision made by the SUT.

send 'α'
choice {

o { receive 'β'
send 'γ'
receive 'δ ' }

o { receive 'β'
send ' ϵ '
receive 'ζ ' }

o { receive 'η' }

}

During the exploration of the graph, TestManager interacts with the SUT by either sending
it a message when it knows that the SUT expects one, or expecting a message from the SUT when
it knows that the SUT is no longer waiting for input but is in the process of generating a response.
These interactive cues are determined according to the STS model. When TestManager receives
a response from the SUT, it will try to find all transitions that leave from a state within the set that
match the response. All members of the set are then replaced by those states that the predicting
transitions led to. If there were no transitions that matched the response, then this set becomes
empty and TestManager must signal an error.

When a transition that is leaving a state in the set signifies that the SUT is waiting for a
response, then TestManager is inclined to explore the graph along that transition. If there are
multiple of such transitions, then TestManager has to try a single one. If the SUT is waiting
for a valued message, then TestManager has to determine which value to generate. If there is a
receive transition that places a specific constraint on this value and TestManager has decided
that it wants to follow this transition, then it must use a constraint solver to find a value that
matches the imposed constraint. If the SUT rejects the message sent by TestManager then the
states from which the transitions depart that specify the message must be removed from the set
of states. Apparently, such states did not predict the future behavior of the SUT. Again, if the set
becomes empty, then TestManager must conclude that the SUT is in error.

The constraint solver used by TestManager is a finite domain solver implemented in GNU
Prolog1. The constraint expressions on the guarded receive transitions are transformed to binary
trees and then passed on to Axini’s Treesolver, which uses the GNU Prolog constraint solver to
determine values for the open variables so that the expression becomes true. If TestManager
has determined that an STS model can traverse a guarded receive transition from its current state,
then the model will take that transition when TestManager sends the SUT a valued message
of which the values satisfy the constraint on that guarded transition and when the SUT accepted
the message.

For example, if a receive transition states that the SUT is waiting for the message a with the con-
straint “_value1 + _value2 > 10 && _value1 >= 5 && _value2 >= 5”, then TestManager
converts this expression to the tree shown in figure 3.2 and passes this tree to the Treesolver.
Treesolver will then use the finite domain solver that is implemented in GNU Prolog to calcu-
late a solution for the open variables _value1 and _value2, e.g. the values 5 and 6 respectively.
TestManager will then generate a message a with those values and send it to the SUT. If the
SUT accepts this message, then this transition is traversed.

1http://www.gprolog.org/
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Figure 3.2: Binary tree generated for a constraint expression

Listing 3.2 shows the relevant pseudocode for Testmanager algorithm when given an STS =
⟨L, l0,V, ι,I,Λ,→⟩ (def. 3). This version has been simplified in a number of ways and the most
important simplifications are that this version ignores τ transitions and both state and message
variables. It is only designed to give an indication of how the set of states is maintained during an
exploration and how a fault is eventually detected.

3.2 Effectiveness
The main issue that limits the effectiveness of TestManager’s approach to software testing is
the restricted coverage. During each iteration, in which TestManager tests a single behavioral
trace and finally resets the SUT to an initial state, a single path of the STS model is tested. As
the number of distinct paths grows exponentially to the size of the model, the time needed to
completely test the SUT grows exponentially as well, as each of these paths need to be checked
individually. Consequentially, non-trivial systems cannot be completely tested within a reasonable
time frame.

If TestManager wasn’t capable of finding a bug within the available time, then TestMan-
ager may only conclude that if there was a bug, it doesn’t visibly affect the tested behavior. To
ensure that as much different behavioral aspects are tested, and so to maximize the chances of
finding a bug, TestManager tries to spread the testing over divergent sections of the model.

Nevertheless, model checking can not directly help with this limitation as model checking will
only be applied to the STS model, and not to the SUT. However, model checking can be used to
reduce the effort that is needed to develop and maintain the models, freeing more resources for
software testing.
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Listing 3.2: Pseudocode for a simplified version of TestManager

states = { s0 }

while True

# cannot predict future behavior of the SUT.

return False if states == ∅

# if the STS can transmit a message

if ∃s ∈ states, s′ ∈ L,λ ∈ Λ ∶ s
λ!ÐÐÐ→ s′

# show initiative and send a message.

m = A message λ ∈ Λ so that ∃s ∈ states, s′ ∈ L ∶ s
λ!ÐÐÐ→ s′

send_message(m)

if SUT rejected m

# remove all states from which m could have been sent

states = states − { s ∈ states ∣ ∃s′ ∈ L ∶ s
m!ÐÐ→ s′ }

else

states = { s′ ∈ L ∣ ∃s ∈ states ∶ s
m!ÐÐ→ s′ }

end

elsif ∃s ∈ states, s′ ∈ L,λ ∈ Λ ∶ s
λ?ÐÐÐ→ s′

m = A message λ ∈ Λ that is sent by the SUT

states = { s′ ∈ L ∣ ∃s ∈ states ∶ s
m?ÐÐÐ→ s′ }

else

# no communication possible. We're done.

return True

end

end
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Chapter 4

Model checking

This chapter contains an overview of the tasks that a model checker performs when it is verifying
a property over a model. A strong focus has been placed on the model checker LTSmin, as this is
the most relevant model checker for this project.

Normally, a model checker takes a closed model, which is expressed in some modelling language
such as Promela, converts it to its state space, which can be represented by a Kripke structure,
and then tries to verify the state space with respect to some desired property. The verification
process is often implemented as a graph traversal through the structure that starts at the initial
state, and inspects every state until either all states have been inspected, or a violation to the
property has been found. If the model checker has detected a violation, then it presents the user
with a counterexample, which is a finite path through the structure that starts at the initial state
and ends at the state at which the violation was detected. If the model checker has not detected
any violation of the property, then the property holds within the checked model. Due to the formal
nature of the model checker, and assuming that the model checker itself doesn’t contain any bugs,
this result is conclusive: if the model checker didn’t find any violation, then the model doesn’t
contain a violation.

Most of the properties verifiable that can be verified within such a structure can be expressed
in a temporal logic such as LTL. To verify such a property, a model checker often contains a
verification algorithm that uses a Büchi automaton to find a property violation. This approach is
used by LTSmin and is discussed in section 4.2.1. Not all properties need to be expressed in LTL
in order for them to be verified. Deadlocks, for example, can be easily found without using such
an automaton and this approach is also discussed later on in this chapter.

To check a model, the model checker has to perform the following tasks:

• State space generation, which is the act of converting a model, that is expressed in a higher
formalism, to a state space.

• Property verification, the act of checking whether the property holds within the generated
state space.

These two tasks do not need to be executed in sequence. Most industrial model checkers can
execute them simultaneously, that is: they can verify the properties while they generate the state
space. This approach is commonly known as on-the-fly verification and has many benefits over
the sequential approach. Section 4.2 will focus on on-the-fly verification, as this is one of the most
important features within LTSmin. This discussion will be preceded by an overview of several
important state space generation techniques, which is given in section 4.1.

4.1 State space generation
State space generation, or reachability analysis, is the task of determining which distinct states are
reachable from the initial state of the model. This task is necessary, because when the model checker
is given a model that is expressed in a higher modelling language, it has no direct knowledge of all
states that are reachable. It must determine the set of reachable states by successively following
untraversed transitions in order to find new unexplored states.

For some models, this state space may be infinitely large. Figure 2.4 shows such a model. The
task of generating the entire state space for such a model will never halt, and if the verification
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is not done on-the-fly but sequentially, then no part of the model will ever be verified. For this
section, we will assume that the state space is only finitely large.

The generated state space is often simply a collection of the reachable states. After the tran-
sitions have been traversed, they are no longer needed and can be omitted. The result is a graph
without the edges, or rather, a collection of the states. A state space that allows the verification
of temporal relations between states, e.g. the verification of liveness properties, can be a combina-
tion of the reachable states with the Büchi automaton that represents the negation of the desired
property (see section 4.2.1). The relevant temporal relations are then incorporated into the states,
making the edges again redundant.

Even when the state space is finite, it might still be too large to be stored within computer
memory. This is a consequence of the dreaded state explosion. A popular countermeasure is to
store the state space symbolically or implicitly [17]. This is opposed to the explicit representation
of states, in which each state is represented and stored individually. A symbolic representation
groups states that are similar to each order, in such a fashion that they can be stored with sublinear
memory requirements [13]. States within such symbolic approaches are often represented as paths
within a decision diagram, which is a layered acyclic directed graph. This symbolic representation
is the subject of discussion in section 4.1.1.

Another possible alternative that can counteract the state explosion, but also deal with an
infinite state space is bounded model checking. This approach tries to detect countermeasures that
have a certain predetermined length k or less [6]. All states that are verified by this approach, lie
at a distance of < k from an initial state. The states that lie beyond this boundary are not verified
and so this approach will fail to detect a counterexample if its length is larger than k.

4.1.1 Decision diagrams
A decision diagram is a layered directed acyclic graph in which the nodes act as decision points.
At each node that has an outdegree > 1, a decision is made about the transition through which
the state is departed. The non-terminal nodes are each labeled with a single variable, and this
decision pertains solely to the value of that variable. If there are K different variables, then the
diagram will have K + 1 different layers where each layer will contain at least one node. The top
layer normally has a single node. Each node that is located within a non-terminal layer will have
≥ 1 outgoing transitions to nodes that are placed at lower layers. We assume that all nodes that
are labeled with the same variable are placed within the same layer. This type of decision diagram
is an ordered decision diagram as every path from the initial node to a leaf will have the same
order of variables.

Figure 4.1(b) shows an example of a binary decision diagram. It has four layers for the three
variables {p, q, r} and these variables are assumed to hold boolean values. The decisions are made
on whether the stored value is true or false. If the variable stores the former value, then the node
is departed through the right transition, if it is the latter, then the node is departed through the
left transition. Figure 4.1(c) shows the minimized form of this diagram, in which all ineffective
decision points have been removed.

A decision diagram can represent the reachable state space within the total state space with
its paths. Each distinct path that departs from the top node and arrives at a terminal node that
is labeled with the boolean value 1 represents a node within the reachable state space. Likewise,
each state that is within the reachable state space is represented by a single path that terminates
at a node that is labeled with the value 1.

Using a decision diagram to represent a Kripke structure, the variables can be elements of the
set of atomic proposition AP [11]. Figure 4.1(a) shows a small Kripke structure K = ⟨S,R,L, I⟩
over a set of atomic propositions AP = {p, q, r} where each state s ∈ S is conform the logic formula
p ∧ (q ∨ r). Figure 4.1(b) shows the full binary decision diagram in which each non-terminal node
has two departing transitions and is labeled with a single atomic proposition. The bottom layer
contains three nodes that are labeled with 1. The three paths that end at these nodes are {p,¬q, r},
{p, q,¬r} and {p, q, r} which together represent all the states that are shown in 4.1(a). Finally,
figure 4.1(c) shows a minimized binary decision diagram in which all of the redundant nodes and
transitions have been omitted. For example, all of the paths that depart the top node through the
left transition end in a terminal node with the boolean value 0. None of the nodes that follow this
transition affect this outcome and can therefor be safely omitted.

A node within a decision diagram can also have an outdegree that is larger than two. The
variable that labels this node is then associated with a value domain that holds more than two
values. Such diagrams are called a multi-valued decision diagrams and are often smaller than the
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Figure 4.1: A Kripke structure (a) along with a full BDD (b) and a minimized BDD (c).

corresponding binary diagrams [14].
There are two important issues that have to be considered when decision diagrams are used

to represent the reachable state space. These issues could have such a detrimental effect on the
generation process, that it sometimes could be better to use an explicit representation instead [40].

The first issue pertains to the order in which the variables appear along paths in the diagram.
This order is important because it determines the size of the resulting diagram. For example, the
minimized diagram that is shown in 4.1(c) has the order p, q, r. If this order was q, p, r or r, p, q
then the resulting diagram would have four states instead of three. For models that are larger and
more complex, the difference between the minimal BDD and the largest could be drastic.

The other important issue is the peak size of the diagram during its generation. Most of the
diagram-generating algorithms maintain the diagram while exploring the state space. New nodes
and edges are added as new states are discovered. At some points during this process, certain
segments can be recognized as redundant, and so the maintained diagram can be reduced to a
smaller form. However, the order, or strategy, in which the state space is explored may determine
how often such moments appear, and with the wrong strategy, the intermediate diagram could
become too large to be stored within memory. There are several strategies, such as saturation,
that are designed to reduce this effect [14, 13].

LTSmin supports both explicit state space representation, binary decision diagrams and multi-
valued decision diagrams. It also uses the saturation strategy to keep the diagram size as small as
possible during symbolic state space generation [48, 56].

4.2 Property verification
The verification of a property is normally done over the state space of a model. Originally, the
state space was generated in its entirety before verification took place, but a more modern and
popular approach is to perform both generation and verification simultaneously. The main benefits
of such an on-the-fly approach are that counterexamples can be detected in less time and with
smaller memory requirements.

Within LTSmin, on-the-fly verification is done with a successor generator. This is a function
that takes a single state and then returns all its successor states. LTSmin handles models that are
written in DVE or Promela by converting them to successor generator functions. Such a function
generates with each execution only a small portion of the state space. The explored state space has
to be maintained to ensure that states that were already explored are recognized as such so that
the process will eventually terminate. These already-discovered states are stored either explicitly
or symbolically.

As was mentioned in section 2.3, most verifiable properties are divided into two classes and this
categorization reflects how these properties can be verified. Informally, verifying safety properties
is about finding “bad” states and verifying liveness properties is about finding “bad” cycles. If no
such “bad” things are found, then the property holds within the checked model.

Safety properties are verified by examining each state individually after it has been gener-
ated. A deadlock has been detected when the successor generating function returns an empty
set. Other safety properties, that are possibly expressed in LTL, can be verified by obtaining the
atomic propositions that hold for that state and evaluate the safety property in relation to those
propositions.
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It is more difficult to verify liveness properties and an popular approach to the verification of
such properties will be discussed within the remainder of this chapter.

4.2.1 Büchi automata
A popular approach to the verification of liveness properties is to use a Büchi automaton, which is
an automata-theoretic approach that was first proposed by Vardi [57, 58] and has been implemented
in the LTSmin and SPIN model checkers [39, 31]. A Büchi automaton is a non-deterministic finite
automaton that consists of several states of which some are designated. The LTL formula that
represents the desired property is negated, and converted to such an automaton. The result of this
conversion is combined with the model to produce a new Büchi automaton. The remaining task
for the model checker is to solve the emptiness problem, which is the determination of whether
there is an accepting cycle within this new automaton. If the model does contain such a cycle,
then there is at least a single infinite path through the model for which the liveness property does
not hold. Conclusively, the property does not hold for the entire model.

The following definitions have been adapted from [21, 30].

Definition 7 (Büchi automaton). A Büchi automaton is a tuple A = ⟨Γ, ρ,Γ0, F ⟩, where:

• Γ is a set of states,

• ρ ⊆ Γ × Γ is a non-deterministic transition function,

• Γ0 ⊆ Γ is a set of starting states, and

• F ⊆ Γ is a set of designated states.

A Labeled Büchi Automaton is a tuple A = ⟨A,D,L⟩ where A is a Büchi automaton, D is some
finite domain and L ∶ Γ → 2D. An execution is an infinite sequence of states γ = γ0, γ1, ... such
that γ0 ∈ Γ0 and for each i ≥ 0, (γi, γi+1) ∈ ρ. An accepting execution γ is an execution such that
there is at least a single designated state f ∈ F that appears infinitely often within γ. An infinite
word w ∈ Dω for which w = w0,w1, ... is accepted iff there is an accepting execution γ = γ0, γ1, ...
such that wi ∈ L(γi) for all i ≥ 0. Furthermore, L(A) denotes the set of all words w ∈ Dω that are
accepted by A.

The intersection of a Kripke structure K = ⟨S,R,L, I⟩ (def. 1) over AP with a labeled Büchi
automaton A = ⟨A,D,L⟩, denoted K ×A is a Büchi automaton with:

• the domain D = 2AP ,

• the state set S × Γ,

• transition function τ ⊆ (S × Γ) × (S × Γ), where ((s1, γ1), (s2, γ2)) ∈ τ iff (s1, s2) ∈ R and
(γ1, γ2) ∈ ρ and L(s2) ∈ L(γ2), and

• the set of designated states S × F .

Given an LTL formula φ and a Kripke structure K, then the task of the model checker is to
generate a labeled Büchi automata from formula ¬φ, denoted A¬φ and see whether the intersection
K ×A¬φ accepts any words, that is: whether L(K ×A¬φ) ≠ ∅. This is the nonemptiness problem
and a model checker can check whether this new automaton is non-empty by using an exhaustive
search of the state space of this new automaton. If the model checker detects a cycle in which a
designated state appears infinitely often, then L(K×A¬φ) is nonempty, and the property φ doesn’t
hold within K.

Figure 4.2 shows two Kripke structures (a and b) and a Büchi automaton (c). They are relevant
to the liveness property φ = G(request → XFresponse) of which an informal translation states
that whenever a request is made, a response will appear within the strict future. This property
holds for 4.2(a), but not for 4.2(b). To verify this property in both models, one converts the
negation of the LTL formula φ to the Büchi automaton A¬φ. This automaton is shown in 4.2(c)
and has been generated from the normalized form of the negation ¬φ = true U (q∧X(false R ¬p))
where for simplicity, response has been replaced with p and request with q.

The generation of the automaton A¬φ was done with the method that was originally proposed
by Gerth et al. [30] and adapted by Clarke et al. [19]. For the representation shown in 4.2(c), the
states are each labeled with the subformulas of ¬φ that must hold at that point. Underneath the
dividing lines, the representation shows the values of L(d), L(e) and L(f).
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The method in [30] also describes how designated states are selected. Using the normalized
version of ¬φ = true U (q ∧X(false R ¬p)), the designated states are determined to be those
that either do not contain ¬φ = F (q∧XG¬p) or those that contain q∧X(false R ¬p) = q∧XG¬p.
Within this image, they are enclosed within boxes to differentiate them from non-designated states.
The state e is a designated state because it contains q ∧XG¬p and f because it doesn’t contain
F (q ∧XG¬p).

Figure 4.3 shows two Büchi automata. These are the result of the intersections of 4.2(a) with
4.2(c) and 4.2(b) with 4.2(c) respectively. In both automata, the grayed-out states are unreachable
because their components contradict each other on some of the propositions from AP . For example,
(b,e) is unreachable because L(b) /∈ L(e). In 4.3(a), (a,f) is unreachable but it does not contain
such a contradiction. However, this state has become reachable in 4.3(b) and furthermore, because
of the added edge between (b’,f) and (a’,f), this automaton has an accepting cycle and is thus
nonempty. This would indicate that the property φ does not hold for the model 4.2(b). The model
checker won’t find any such cycle in 4.3(a), and will therefor conclude that φ holds for 4.2(a).

Figure 4.2: Two interesting models for a liveness property (a, b) and the Büchi automaton for that
property (c).

Figure 4.3: The two models from 4.2 each intersected with the Büchi automaton.

LTSmin uses an on-the-fly depth-first-search approach to solve the nonemptiness problem [38,
39]. Such an approach is not easy to parallelize, because depth first search is inherently sequential.
However, the implemented algorithm has been designed for use with multiple-cores through swarm
verification, in which multiple workers each try to verify the entire state space, but are randomly
guided to different regions of the state space. Furthermore, whenever any of the workers have
determined that a certain region doesn’t contain any counterexamples, they communicate this
finding to their peers. This decreases the chances that multiple workers are working on the the
same region simultaneously, as they check whether a region has already been verified before entering
it. The result is that as the number of workers grow, the entire state space will be covered in less
time as each worker tries to find and verify his own region of this state space.
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Chapter 5

Software Implementation

This chapter describes the software system, or prototype, that was developed during this project.
The developed software allows Axini to model check some of the STS models that they use for the
automated testing of interactive systems. When this product is incorporated into their toolbox, it
will help Axini with determining whether the STS model itself adheres to the systems requirements.
As a consequence, this will allow Axini to

• prematurely detect errors before the model is used by TestManager,

• develop complex models in less time,

• ensure that the SUT is tested more thoroughly by reducing the effort needed for developing
and maintaining the STS models, and

• possibly test if the system requirements are consistent with each other, by checking if there
is any model that is correct with respect to all these requirements.

Currently, the software system can only check for deadlocks. This allows it to ensure that the
model will not halt indefinitely. Such a fault can occur when the model is incomplete, i.e. certain
transitions are missing that are necessary for the model to continue; or when constraints within the
model prohibit the model from continuing from a reachable state (i.e. an implicit deadlock). Figure
6.2 shows a state space that is generated from an STS model with a deadlock that occurs when
a constraint prohibits the model from leaving a state. It is estimated that support for liveness,
safety and other LTL-expressible properties can be added without significant amount of effort.

The current implementation closes the open STS models and translates them to the DVE
language. The resulting DVE model is then inserted into the LTSmin model checker. Closing the
model has proven to be a difficult task, and currently only certain simple models can be checked.
Section 5.8 describes which models fall within the scope and a discussion of possible methods to
increase this scope is given in chapter 7 and appendix C.

What follows in this chapter is a description of the implementation that is preceded by an
enumeration of the challenges that had to be faced during the design and construction and the
decisions that were made to meet or avoid these challenges. Chapter 6 lists some of the models
that can be checked, along with the output of the prototype. For a lists of technical issues, one
could check appendix C.

5.1 Challenges
An obvious issue that prevents STS models from being model checked, is that there is no available
model checker that can read models that are written in the STS language. A possible solution is to
modify an existing model checker to accept STS models, but there are some important issues that
make this solution non-trivial.

• STS is an extension of the Ruby1 language. Ruby class declarations, method calls, Hash
operations, etc. are informally part of the STS language. TestManager loads the model
by using the Ruby interpreter to parse the model file and interpret the STS specific keywords
as Ruby method calls. One could restrict the STS language by excluding non-STS specific

1https://www.ruby-lang.org
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constructs, but this hinders the adoption of model checking within the Axini workflow as
many complex STS models contain Ruby method definitions and such constructs make it
easier to manually create and modify STS models.

• STS supports open models. As was previously mentioned in chapter 3, the models inserted into
TestManager must be open as TestManager can only communicate with the messages
that are defined on the external channels. Most model checkers do not support open models.
Some do but they are often too academical for practical purposes.

• STS supports the specification of message transmissions with unspecified values. STS models
can specify the transmission of valued messages without specifying the exact value. Rather,
it is possible to specify a value domain from which the values can be selected. Such value do-
mains can be complex and consist of interactions between multiple variables. TestManager
uses a constraint solver to select the appropriate values.

• STS supports a wide variety of datatypes. STS allows operations on floats, strings, datetime
objects, arrays, sets and dictionaries while most model checkers only support integers and
arrays of integers. To address this issue, it’s not sufficient to map these datatypes to integers.
Operations performed on variables with these datatypes must also be correctly translated.

Finally, these issues need to be resolved in such a way that they still allow for proper model
checking. Resolving any of the aforementioned issues in an incorrect way, might cause the software
system to claim that the model is correct with respect to certain properties when it isn’t (i.e. false
positives) or that the model is incorrect with respect to properties when it is (i.e. false negatives).

5.2 Architectural Decisions
To be able to produce a viable solution despite the challenges listed in the previous section, several
decisions have been made that affected the design and scope of the implementation. What follows
are some of the important design decisions that were made.

• Use a publicly available model checker. Developing a model checker takes a significant amount
of theoretical understanding and effort while good model checkers are publicly available as
open source software. However, such an available model checker won’t support STS models.

• LTSmin as model checker. LTSmin has been selected over several other candidates, such as
SPIN, DiVinE, etc. for several reasons. In short, LTSmin is generally faster, more scalable
and more extensible than its competitors. These and several other reasons are discussed in
section 5.5.

• Do not extend the model checker to support STS. As STS is an extension of the Ruby language,
modifying a model checker such as LTSmin to support the Ruby language would take too
much effort. LTSmin supports several model specification languages, among which ETF
directly maps to the internal representation of the state space. Thus, any advantage gained
by extending LTSmin with Ruby could also be gained with converting STS to ETF or any
other language already supported by LTSmin.

• Use DVE as input language for LTSmin. Compared to the other languages that LTSmin
accepts, it is relatively easy to automatically convert STS to DVE. However, STS has idiosyn-
cratic features that cannot be directly translated to DVE. These features and how they were
dealt with are described in section 5.7.

• Use of Ruby as development language. All important code that was developed during this
product is written in the Ruby programming language. Ruby enables fast development of
prototypes for which fast execution speed is not an essential issue. It is also the primary
programming language in use at Axini and several necessary utilities such as the STS parser
and the Treesolver constraint solver are available as Ruby libraries. See section 5.4 for a
small overview of the Ruby programming language.

• Only allow certain models to be closed. This prototype cannot close most of the STS models
as the required theoretical background wasn’t available and couldn’t be developed given the
available time. Several research projects that discussed a general approach accepted the
existence of false negatives [49, 12]. Within this project, the decision was made to ensure

28



Figure 5.1: Global overview of the implementation.

the correctness of the results at the cost of reduced applicability. Future work might either
deliver a general algorithm without false negatives or produce a method that can help discern
between the negatives that are false and those that are true. Section 5.8 discusses the method
of closing, and describes which models can be closed. Chapter 7 and appendix C discuss
possible future work for dealing with this limitation.

5.3 Overview
The implementation exists as a small toolset of executable Ruby scripts where each tool has its
own separate task. Combining these applications allows one to close an STS model, translate it to
DVE and model check it. Listing 5.1 shows how these scripts can be combined into a bash shell
one-liner as each script reads its input through stdin and writes its result to stdout. Following
is a list of the individual scripts found in the toolset.

• sts2sts: reads an STS model, normalizes it and writes the result to stdout. The normal-
ization is discussed in section 5.6 and the output is STS code that is conform to the language
specification described in appendix A. While this script doesn’t appear in listing 5.1, it can
be used to inspect the result of the normalization that is used during both closing and DVE
translation.

• sts2dve: reads an STS model, prepares the normalized model for DVE translation and writes
the result as DVE code to stdout. The preparations that are necessary for DVE translation
are described in section 5.7.

• closemodel: reads an STS model, closes it, and writes the resulting model as STS to stdout.
The method of closing is described in section 5.8.

• checkmodel: is a wrapper for the LTSmin model checker. It reads a DVE model from stdin

and passes it on to LTSmin. LTSmin’s output is written to stdout. Listing 5.2 shows the
command LTSmin is executed with. The -d flag instructs the model checker to check for
deadlocks and terminate as soon as it has found one.

Listing 5.1: A POSIX shell one-liner that enables model checking

cat <model.sts > | closemodel | sts2dve | checkmodel

Listing 5.2: How LTSmin is executed for model checking.

dve2lts -seq -d <model.dve >

Three of the four previously listed scripts use a common library that contains utilities for parsing
models that are written in the STS language, normalizing, closing and finally printing the resulting
model. Figure 5.1 shows how these scripts use the components within the library to produce their
output. The components within the red box were developed during the course of this project while
Axini::STSParser and Axini::Treesolver already existed as a part of TestManager. What
follows is a list of the components that are shown within the image.
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• Axini::STSParser: an external component that was developed by Axini for use with Test-
Manager. It parses STS models and generates an internal representation that forms a sym-
bolic transition systems and consists solely of Ruby objects. This representation is passed on
to the normalizer.

• Normalization: a component that takes an internal representation that is generated by the
Axini::STSParser and prepares it for further processing. The STS parser contains some
bugs that alter the internal representation by e.g. introducing deadlocks. These introduced
deadlocks are different from those that belong to the model and are recognizable as such.
Normalization removes these and other wrongly-introduced issues from the model. Fur-
thermore, Normalization minimizes the model by applying bisimilarity minimization and
subsequently removing all duplicate transitions. The entire process is described in section
5.6.

• STSPrinter: a component that prints a normalized internal representation as STS. The
generated output is conform to the language as it is describes in appendix A. Due to the
fact that the model is normalized and won’t contain any Ruby method declarations, the
output could be drastically different from the original STS model. However, using bisimilarity
checking to compare the original input with the output, we managed to ensure to some extent
that the original model is behaviorally equivalent to the result. This verification was done
using several different models of varying complexity and this result validates, to some extent,
both the results of the STSPrinter and the Normalization components.

• ModelCloser: a component that first determines whether a given normalized internal repre-
sentation of a model can be closed. If not, it throws an exception. Otherwise, this component
closes the model according to the method described in section 5.8. An environment process
is added for each process that is in the original model and communicates over an external
channel. The original processes remain unaffected, safe for the modifications that are applied
by the Normalization component.

• Axini::Treesolver: another external component that was developed by Axini. It is a
finite domain constraint solver that is mainly implemented in Prolog and accessible through
a Ruby library. It was originally designed for use with TestManager so that it could
generate message values for communication with the SUT. Such messages are specified in the
STS model but without a concrete value.

• DVEPreparator: a component that alters certain parts of the model structure so that it can
be printed in DVE. More specifically, the transmission of each valuated message is combined
with a feedback mechanism where the receiver informs the sender whether the received value
adheres to the constraint that was placed on the receiving transition. More details on the
implementation are given in section 5.7.

• DVEPrinter: a component that converts a prepared model to a DVE string. The DVE
code that is generated is correct according to the 2.4 version of the DiViNE model checker.
LTSmin uses this specific version of DiViNE to read DVE models.

5.4 Ruby
As was previously mentioned, the programming language Ruby was selected for the development
of the prototype. The main reasons for this decision are that this language was already used
extensively at Axini and that many of the components that were necessary for the parsing of STS
models and the communication with the constraint solver Treesolver were available as Ruby
libraries. As Ruby is a mature general-purpose programming language, there would be no reason
why the prototype could not be developed in this language.

Most of the remarks in the remainder of this section have been extracted from interviews with
the creator, Yukihiro Matsumoto [51, 60, 59]. Ruby is a relatively young, dynamic object-oriented
language that is mainly based on Perl and has adopted important features from Smalltalk, Lisp
and Python. While Ruby is in itself a potent language, its incorporation into the web development
framework Ruby on Rails significantly increased its popularity.

Ruby has some interesting features that outline its design philosophy and differentiate it from
most other popular general-purpose programming languages. The following list will describe some
of the most important of these features.
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• Ruby was designed for writing succinct and compact code. Its main focus lies on programmer
productivity, with less focus on producing fast or robust applications. The language includes
few special safety features that would help programmers with writing bug-free code and they
are presumed to test their software extensively during development. Consequentially, Ruby
is a language that is well-suited for creating prototypes in a relatively fast time.

• With the correct preparations, C code can be loaded into the Ruby runtime and from that
point on be called by Ruby methods. The C code first needs to be wrapped with the correct
interface handlers and then compiled into a shared object before it can be dynamically loaded
into the Ruby runtime. While many programming languages offer this feature as well, this
feature seems to be more easy and powerful with Ruby than with other popular languages.
This feature complements the previous feature, in that a prototype, once it ceases to be a
prototype and becomes a mature software product, can be further optimized by replacing
efficiency bottlenecks with highly optimized C code.

• Ruby has a less strict syntax than many other languages. Syntactical elements such as
parentheses and braces are only enforced by the interpreter when an ambiguity would appear
otherwise. This makes Ruby a popular language for designing domain specific languages
with relatively little effort as such languages can be built from keyword sequences that are
underneath the domain specific layer actually Ruby method calls. Good examples of DSLs
built on top of Ruby are Axini’s modelling language STS, the unit test specifications for rspec
and the configuration files for the Ruby package maintainer RubyGems.

• Finally, the Ruby development framework contains several useful and mature tools that
help the Ruby programmer with detecting bugs, maintaining application dependencies, and
releasing the application to the user. These tools are readily available to the programmer
through RubyGems and can be installed automatically along with the developed application.

5.5 LTSmin
LTSmin is a model checker that is maintained by the Formal Methods and Tools research group
operating at the University of Twente2. LTSmin has a modular design that enables language-
agnostic implementations of state space generation and property verification algorithms. This
design is mainly facilitated by the PINS module.

PINS, short for Partitioned Next-State Interface is a module placed between the language-
specific components, and the language-agnostic components. PINS enables language-agnostic fea-
tures by forcing the language-specific components to adopt a certain interface so that they expose
the part of the model structure that is sufficient to enable high-performance generation and veri-
fication algorithms [41].

The design of PINS is based on the idea of event locality which is the notion that most events
within the model only affect a small portion of the system [7, 8]. Special state space generation
techniques such as partial order reduction benefit from event locality, as they counter the combi-
natorial explosion of all possible event sequences by only generating a single sequence when these
events all depend upon or affect separate non-overlapping regions of the state space. A language-
specific component is required to generate a dependency matrix in which groups of transitions
are linked to the portions of the state vector that they read or write to. Such a matrix can be
generated with static analysis [41].

Language-specific components are also required to implement a successor generating function.
Such a function takes an explicit state vector and returns all its successor states. LTSmin is capable
of reading popular model specification languages such Promela [53], Uppaal [22], DVE and several
others by modifying the existing model checkers for these languages so that they produce successor
generating code in C or C++ instead of checking the model themselves. The resulting code is then
compiled to a shared object and loaded dynamically into LTSmin. By this method, individual
models are converted into language-specific components.

LTSmin has been selected over other available model checkers for several reasons. The most
important contender for LTSmin was SPIN [32, 31] which is also a high-performance model checker
popular tool. Other popular model checkers are Uppaal and DiVinE, but these were not considered
for selection as they lacked many of the important features that were available in LTSmin and SPIN.
The following list contains several of the important reasons for selecting LTSmin over SPIN.

2http://fmt.cs.utwente.nl/
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• SPIN only accepts models in the Promela language and successor generating code written
in C. LTSmin accepts Promela and several other model specification languages as well as
successor generating code written in C and C++. This variety gives us more freedom in
selecting an intermediate language for the STS models.

• LTSmin supports symbolic state space representation, allowing it to store larger state spaces
in sublinear memory space. Currently, SPIN can only generate and store state spaces in
an explicit fashion. A recent comparison of LTSmin and SPIN revealed that SPIN was only
capable of generating the state space for GARP2 with 3.3×1011 states using lossy compression,
while LTSmin managed to both correctly deal with GARP2 and store the entire state space
for another model with 7.8 × 1020 states within 39MB [53]. Such symbolic methods would
allow Axini to check some of their larger STS models.

• LTSmin accepts properties expressed in CTL and LTL [55, 53]. SPIN only accepts correctness
claims specified in LTL [31].

• Recent comparisons have shown that for reachability analysis on several selected models from
BEEM [45], LTSmin is faster than SPIN on single-core executions. LTSmin also benefits
from a nearly linear speed-up with multi-core executions, while SPIN doesn’t appear to use
algorithms that were developed to exploit multiple CPU cores [53]. As multi-core machines
are nowadays common in both workstations and servers, Axini can exploit this nearly-linear
speedup to generate verification results in significantly less time.

5.6 Normalization
The normalization step prepares the internal representation of the STS model for further process-
ing. This is done by a) removing unreachable states that were introduced by Axini::STSParser,
b) removing certain deadlocks that were also introduced by Axini::STSParser, c) merging states
that are only, directly and indirectly, connected by τ transitions with no update or constraint
statements, d) removing any redundant transitions between states, and finally e) reducing the
number of states and transitions by applying bisimilarity minimization. To verify the correctness
of the output, i.e. to ensure that the deadlocks and property violations within the original model
are retained during this normalization, several models of varying complexity were normalized and
the output was compared to their original counterparts using bisimilarity checking.

The deadlocks introduced by Axini::STSParser are recognizably different from those that
could be introduced by the original STS model. Such states have no outgoing transitions (as
deadlocks often do), are reachable from the initial state, and the transitions that directly lead into
them are τ -transitions without update or constraint modifiers. Removing these states and the
silent τ -transitions may produce new deadlocks that are also not part of the original model, so this
step is repeated until such states are no longer found.

The method of bisimilarity minimization is based upon an algorithm of bisimilarity checking
that was originally developed by Kanellakis and Smolka [35, 1]. This method compares two models
by first merging their states into a single set Pr and then splitting this set into the coarsest partition
π, where

• π = {B0,B1, . . . ,Bk},

• Bi ∩Bj = ∅, for all 0 ≤ i < j ≤ k, and

• Pr = B0 ∪B1 ∪ ⋅ ⋅ ⋅ ∪Bk.

The sets B in a partition π are called blocks. A splitter for a block Bi is a block Bj within the same
partition so that for some event a, Bi contains states that have an a-labeled transition leading to
a state in Bj as well as states that do not have such a transition. When there exists a splitter Bj

for block Bi and an event a so that ∃s ∈ Bi, s
′ ∈ Bj ∶ s aÐÐ→ s′ ⋀ ∃s ∈ Bi ∶ ∄s′ ∈ Bj ∶ s aÐÐ→ s′ then

Bi can be split to produce B1
i and B2

i where

• B1
i = { s ∈ Bi ∣ ∃s′ ∈ Bj ∶ s aÐÐ→ s′ }, and

• B2
i = Bi / B1

i .
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Within the existing partition π, Bi is replaced by B1
i and B2

i to produce a new partition π′. This
algorithm will always terminate, because eventually a fixpoint will be reached where no splitter
can be found for any block. Such a coarsest partition will either consists of only blocks that each
contain a single element, or of blocks containing only states that agree on their leaving transitions.
Two models are bisimilar iff each block in the resulting coarsest partition contains states from both
models.

The events are represented by the transitions between the states. For STS, two transitions
represent the same event, iff they have the same string representation and this representation
includes their constraint and update modifiers. Listing 5.3 shows two distinct STS processes that
are bisimilar because they can emit exactly the same behavior. The process process_b is actually
a reduced form of process_a as its underlying graph contains less states and less transitions while
still being able to display the exact same behavior.

Listing 5.3: Two processes that are bisimilar

external 'a_channel '

sts('process_a ') {

response 'value_is ', {'_value ' => :integer}, 'a_channel '

var 'x', :integer , 0

choice {

o { update 'x = 5;'

update 'x = x * 2;'

send 'value_is ' { :constraint '_value = x' }}

o { update 'x = 7;'

update 'x = x * 2;'

send 'value_is ' { :constraint '_value = x' }}

}

}

sts('process_b ') {

response 'value_is ', {'_value ' => :integer}, 'a_channel '

var 'x', :integer , 0

choice {

o { update 'x = 5;' }

o { update 'x = 7;' }

update 'x = x * 2;'

send 'value_is ' { :constraint '_value = x' }

}

}

Partition refinement algorithms such as Kanellakis and Smolka can also be used for bisimilarity
minimization. The algorithm is modified to work on a single model instead, that is: Pr will only
contain states from a single model. The algorithm will then partition these states into blocks
where all states within the same block will allow the same future behavior. The reduced model is
generated from the blocks within the final partition by selecting a single state from every block and
generate the transitions between these states accordingly. Partition refinement algorithms can be
used to minimize labeled transition systems, but there are some problems when they are applied
to symbolic transition systems [10].

Figure 5.2 shows how bisimilarity checking can be used to minimize a model. The initial
partition π places all states within a single block B0. The partition π′ is then produced by the
splitting of block B0 with itself on event a. The coarsest partition π′′ is subsequently created from
the partition π′ by splitting the block B′

1 with itself on event c. Finally, a single state is selected
from each block to produce a minimal model.

Due to the fact that the algorithm was designed to minimize labeled transition systems, and
not symbolic transition systems, it is possible that the resulting reduced model is not the minimal
bisimilar model. Future work is needed to ensure that the minimalization is done correctly and
produces the smallest bisimilar model.

5.7 DVE Printing
DVE is a model specification language that was originally designed for the DiVinE model checker
[4]. The prototype converts the STS models to DVE so that they can be read by the LTSmin model
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Figure 5.2: Application of the bisimilar minimization algorithm to a small model.

checker. DVE was selected over Promela and other languages supported by LTSmin because the
model specifications are relatively easy to generate in this language.

However, there are two important differences between STS and DVE that prevent a direct
translation. The underlying graph structure had to be modified to deal with these issues and
enable a valid translation. These issues are as follows.

• STS allows guards on message receiving transitions that refer to message parameters. These
constraints could prevent a value from being received - and the message from being commu-
nicated - if the transmitted value fails the constraint. DVE only allows constraints to refer
to process variables.

• STS supports messages with multiple parameters. Although such messages are also supported
by the latest version of the DiVinE model checker, the DVE parser used by LTSmin doesn’t
support such messages.

The latter issue was dealt with by splitting multi-valued messages into several single-valued
messages that must be transmitted successively The former issue required a feedback mechanism
to be added to every message transition. In case of a transition that received a multi-valued
message and placed a constraint on at least one of these parameters, the feedback mechanism was
added before the message was broken up.

The feedback mechanism consisted of two new messages that are to be send by the receiving
process to the sending process. These messages are success and failure. The sending process
was modified to only continue with its normal operation when it receives the success message.
Otherwise, if it receives failure, it will fall back to the state that it was at before it transmitted the
valued message. Within the receiving process, the transmitted values are temporarily stored within
process variables where they are then subjected to the constraints. Figure 5.3 shows receiving
and sending processes after the structural modifications have been applied to the respective STS

fragments shown in listing 5.4.
A subtle issue with this method is that it might remove certain deadlocks from the original

model and replace them with inescapable loops that only contain the transmissions of the valued
message and the message failed. Models with such deadlocks contain a process that can reach a
point from where it can only transmit a message that is not accepted by any other process. This
issue is somewhat mitigated by the fact that these deadlocks can still be detected with liveness
properties.
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Figure 5.3: Result of DVE restructuring applied to fragments shown in listing 5.4.

Listing 5.4: Several STS fragments for receiving transitions

channel('channel_a ') {

stimulus 'a', {'_value ' => :integer}

stimulus 'b', {'_value ' => :integer}

stimulus 'c', {'_value1 ' => :integer , '_value2 ' => :integer}

}

state 'receiving_a '

receive 'a' { :constraint => '_value > 0' }

state 'receiving_b '

receive 'b' { :constraint => '_value > 5'; update => 'value = _value;' }

state 'receiving_c '

receive 'c' { :constraint => '_value1 + _value2 > 10',

:update => 'value1 = _value1; value2 = _value2 ' }
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5.8 Model Closing
An STS model needs to be closed so that it can be model checked by LTSmin. An STS model is open
when it contains a process that communicates with another process that is not contained within the
model. TestManager can be such an external process. The approach used during this project
closes the model by adding a finite process that represents the maximum environment. Combined
with this new process, the original process will retain all of its behavior and all of its verifiable
properties. However, to keep this environment small enough and so to minimize the resulting state
explosion, a sufficiently small representation of this maximum environment is produced instead
while still enabling the original model to retain its properties. Unfortunately, this algorithm is not
a general one: there are many STS models that fall outside its scope and cannot be closed with
this algorithm.

The process of closing a model consists of several steps. First, before the closing process is
started, some form of static analysis is used to determine whether the model is within scope. If
this isn’t the case, then an exception is thrown and the process aborted. The closing step uses
static analysis to gather all constraint sequences and determines which values the environment
needs to send to ensure that all paths within the original processes remain traversable. These steps
are discussed within the remainder of this section. Listing 5.5 contains a simplified pseudocode
representation of the entire model closing algorithm. This version has been designed to be as
succinct as possible and many important details have been omitted for clarity.

5.8.1 Scope
There are three important limitations that are placed upon the STS models that determine whether
these models can be closed with the implemented algorithm or not. The first limits the datatypes
that can be used, the second limits the way in which two processes can communicate, and the last
limits the sequence in which variables can be read from or written to within cycles.

Currently, models can only use integer datatypes. Such datatypes are readily accepted by the
DVE parser that is used by LTSmin. Extending the set of accepted datatypes is difficult, because
DVE only accepts integer datatypes. A possible solution is to map the non-supported datatypes to
integers datatypes, but this is difficult because not only do the distinct values need to be mapped
to integers, but the datatype-specific operations need to be translated to integer operations as well.
For obvious reasons, support for non-integer datatypes has been omitted for this project.

Another limitation prevents model checking on STS models with multiple processes that inter-
nally communicate valued messages. The current algorithm closes each process on its own, ignoring
the values that it receives or sends over internal channels. Processes that do receive values over
internal channels cannot be correctly closed with this algorithm, as this algorithm doesn’t con-
sider the variables that are influenced by neighboring processes for its static analysis. The sending
processes might therefor not transmit the values that are necessary to keep all paths open.

The third limitation pertains to the sequence of read/write operations on variables within cycles.
Static analysis is used to detect each cycle and determine, for every variable that is referred to,
what the read/write pattern is. The underlying notion is that when a variable is read from before
it is written to in a single cycle iteration, or over an unbroken sequence of cycle iterations, the
following constraint or update expressions that refer to the affected variable could be irreducible.
The model closer normalizes the constraint and update expressions by replacing all references to
process variables with the expressions that were last assigned to them. Given a model with such a
cycle pattern, an expression that replaces the reference to the affected variable, could be infinitely
long, or there could be an infinite amount of different expressions to replace that variable with.
The model closer is then not capable of ensuring that all sufficient values are generated to keep all
paths open and all verifiable properties preserved.

An out of scope model is shown within listing 5.6. The process within this model can emit
a certain number of sum_<=_10 messages and then either send sum_==_11 or halt in a deadlock.
Determining a minimal environment for such a process is very difficult as its behavior does not
only depend upon the most recent input, but could also depend upon the input values that it has
received in the past. Such an minimal environment has to ensure that the deadlock is retained so
that LTSmin may detect it. An environment that only transmits the message add with the value
1, will cause the model to lose that deadlock.
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Listing 5.5: Pseudocode for the model closer

def modelcloser(sts_model)

# First , check if model is in scope.

if in_scope(sts_model) == false

error("Model cannot be closed!")

end

closed_model = sts_model.duplicate

for every process pr ∈ closed_model:

env_name = pr.name + "_env"

env_process = new sts_environment_process(env_name)

# normalize all constraints: the normalized constraints

# only consist of operations on constants and interaction

# variables.

normalized_process = normalize_constraints(pr)

for every non -cyclic path pa ∈ normalized_process:

path_constraint = ⊺

# follow path from start to end

for every guarded transition t ∈ pa:

path_constraint = path_constraint ∧ t.constraint

# Ensure that any deadlocks are preserved

if there is a guarded transition t_ with t_.origin == t.destination:

deadlock_constraint = path_constraint

for every guarded transition t_ with t_.origin == t.destination:

c = t_.constraint

deadlock_constraint = deadlock_constraint ∧ ¬c
end

# If there is a solution for deadlock_constraint , then

# env_process must send it to retain the deadlock.

solution = Axini:: Treesolver.solve(deadlock_constraint)

for every interaction variable i ∈ path_constraint:

m = pr.message_for_interaction_variable(i)

env_process.send_message_with_value(m, solution[i])

end

end

end

# After all constraints in pa have been gathered , ensure that

# pa remains traversable by making the environment send the

# values that are sufficient for it to be traversed.

solution = Axini:: Treesolver.solve(path_constraint)

for every interaction variable i ∈ path_constraint:

m = pr.message_for_interaction_variable(i)

env_process.send_message_with_value(m, solution[i])

end

end

closed_model.add_process(env_process)

end

return closed_model

end

37



Listing 5.6: broken_summer model, which cannot be closed

external 'my_channel '

sts('summer ') {

var 'sum', :integer , 0

channel('my_channel ') {

stimulus 'add', {'_value ' => :integer}

response 'sum_==_11'

response 'sum_ <=_10'

}

state 'init'

receive 'add', {: constraint => '_value > 0';

:update => 'sum = sum + _value;'}

choice {

o { constraint 'sum == 11'

send 'sum_==_11'

update 'sum = 0;'

}

o { constraint 'sum <= 10'; send 'sum_ <=_10' }

}

goto 'init'

}

5.8.2 Constraint gathering and analysis
The process of closing consists of the following steps:

1. Normalize all constraint expressions. References to process variables are replaced with the
expressions that were last assigned to these variables. These normalized expressions consist
solely of operations on integer constants and message variables.

2. Generate the constraint sequences:

• Traverse all possible paths and collect the constraints on the individual transitions into
constraint sequences. For each path that contains at least one guarded transition, a
single constraint sequence is made. The elements of these sequences are the constraints
as they are part of the transitions and due to the preceding normalization, these con-
straints only consist of operations on integer constants and message parameters. A
solution for such a sequence would allow the represented path to be traversable.

• Gather all states with guarded transitions that leave them, and generate for each state
a constraint sequence that makes such states reachable but inescapable. Such sequences
are generated by combining a constraint sequence that make the state reachable, with
the negations of all guards on the leaving transitions. If this combination has a solution,
then the state can be inescapable.

3. For every generated constraint sequence, use TestManager’s Treesolver to determine
the values for the message parameters so that all individual elements of the sequence are
satisfied.

4. Finally, for every generated value, create a message that is to be transmitted by the environ-
ment process.

Due to the third scope limitation, all references to process variables can be replaced with
assignment expressions that are of finite length. When there are parallel assignments, then any
constraints that have references with multiple replacements are duplicated. An example of this
duplication is shown in listing 5.7 where the choice block allows multiple parallel assignments to
the same variable. The second part of this fragment shows what the results of the normalization
and duplication are: the single path with the two constraints is now duplicated and any references
to var are replaced with _value / 2 and _value + 3 respectively.
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Listing 5.7: Normalized and duplicated STS constraints

sts('process_a ') {

receive 'message ', { :constraint '_value > 0',

:update 'var = _value;' }

choice {

o { update 'var = var / 2;' }

o { update 'var = var + 3;' }

}

constraint 'var > 3'

constraint 'var < 5'

}

sts('normalized_a ') {

receive 'message ', { :constraint '_value > 0',

:update 'var = _value;' }

choice {

o { update 'var = _value / 2;' }

o { update 'var = _value + 3;' }

}

choice {

o { constraint '_value / 2 > 3' }

o { constraint '_value + 3 > 3' }

}

choice {

o { constraint '_value / 2 < 5' }

o { constraint '_value + 3 < 5' }

}

}

For the STS fragment shown in listing 5.7, two sets of constraint sequences will be generated.
The first set will contain the sequences that enable all paths to be traversed.

• [_value > 0, _value / 2 > 3, _value / 2 < 5], and

• [_value > 0, _value + 3 > 3, _value + 3 < 5]

The second set consists of the constraint sequences that retain the deadlocks.

• [_value > 0, _value / 2 <= 3]

• [_value > 0, _value + 3 <= 3]

• [_value > 0, _value / 2 <= 3, _value + 3 <= 3]

• [_value > 0, _value / 2 > 3, _value / 2 >= 5,]

• [_value > 0, _value / 2 > 3, _value + 3 >= 5]

• [_value > 0, _value / 2 > 3, _value / 2 >= 5, _value + 3 >= 5]

• [_value > 0, _value + 3 > 3, _value / 2 >= 5]

• [_value > 0, _value + 3 > 3, _value + 3 >= 5]

• [_value > 0, _value + 3 > 3, _value / 2 >= 5, _value + 3 >= 5]

The solutions for the first set are 8 and 1 respectively. All paths of the program will be
traversable when the environment sends messages with these values. The solutions for some of
the sequences in the second set are 1, 2, 8 and 10. The other sequences have no solution, and no
messages are created for them. A final observation to make is that when there are solutions for
sequences in the second set, there is strong possibility that the model has a deadlock and that this
deadlock can be triggered when it receives the solution as a value. It is uncertain whether this is
always the case when there are solutions for sequences in the latter set.
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Chapter 6

Results

This chapter consists of two parts. The first section, 6.1, describes the results that were produced
during the execution of this product. Section 6.2 describes the functionality of the prototype in
detail by using case studies.

6.1 Deliverables
The following results were produced during the execution of this project:

• A prototype that enables STS models to be checked, containing

– Implementations of the Kanellakis and Smolka bisimilarity checking algorithm and the
bisimilarity minimization algorithm based upon it. These are described in section 5.6.

– A method that converts the internal symbolic transition system representation to a
string of STS, according to the language definition given in appendix A.

– A method that converts the internal sts representation to a string of DVE, described in
section 5.7.

– An algorithm for model closing that retains model properties, described in section 5.8.

– A method for determining whether models can be closed by the model closing algorithm,
as is described in section 5.8.1.

– A set of unit tests that test various aspects of the prototype.

• An implementation of the algorithm by Gerth, et al. that converts LTL formula to Büchi
automata [30]. This algorithm is implemented as it was described by Clarke et al. in [19].

• A new interface for the Treesolver. This new interface is implemented in C and offers
increased stability and support for generating multiple solutions per query.

• Research that was done to answer the questions that are listed in section 1.3. The results
are discussed in chapter 7 and quickly listed here:

– results on how STS models can be model checked.

– results on how STS models can be closed.

– results on how deadlocks can be detected in STS models without using a model checker.

6.2 Prototype functionality
The prototype that was developed during the course of this project is capable of checking certain
STS models for deadlocks. This section demonstrates the usability of this prototype by showing
some interesting STS models along with the verdicts from the model checker. The implementation
itself contains a test suite, written in rspec, that tests the model closing, DVE translation and
model checker verdict with respect to certain interesting STS models. For all of these models,
the model checker managed to correctly determine whether the model contained a deadlock or
not. Several of these models are included within this thesis and one has been selected for a more
in-depth case study given in section 6.2.2.
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name listing deadlock
sends B.1 yes
sends+loop B.2 no
receive+constraints B.3 yes
receive+constraints+different B.4 no
sends_sum_of_values+virtual B.5 yes
sends_sum_of_values+lazy B.6 yes
constrained_receive B.7 no
minimal_values B.8 yes

Table 6.1: Selected models

As the developed product is only a prototype, this chapter not contain any measurement of
speed, CPU usage or memory utilization. Furthermore, most of the intensive work is done by the
LTSmin model checker on the closed DVE model, while the remainder of the prototype only serves
to prepare the STS model for model checking. This conversion only needs to be done once per STS
model.

6.2.1 Case studies
The prototype was tested with 20 small STS models. These models were originally constructed to
test different elements of the DVE translator and the closing process. These models each consist
of a single process that communicates with its environment through several messages. Some of
these processes contain multiple paths, of which some can only be taken when the environment
sends a message with a specific value. The model closer must ensure that all these paths remain
open by creating an environment process that is capable of sending the values that are sufficient
for keeping them open. The model closer must also ensure that any deadlocks within the original
model are retained within the closed model. This is done by ensuring that the environment also
sends the values that cause these deadlocks to appear.

For all 20 models, the model checker returns the correct result; that is: it correctly determined
whether the model did or didn’t contain a deadlock. This would indicate that for the tested models,
the closing and translating was also done correctly. Table 6.1 lists some of these 20 models which
were included in appendix B. One of these models, sends_sum_of_values+virtual, is discussed
more in-depth in section 6.2.2.

For the list of models, those named sends, receive+constraints,
sends_sum_of_values+lazy, sends_sum_of_values+virtual and minimal_values contain
deadlocks. The first model doesn’t contain a cycle, so it will only execute a finite amount of steps
before reaching the final state. Such types of deadlocks are trivial to detect, as the underlying
symbolic transition system will contain at least a single state with no outgoing transitions. The
other three models do contain a cycle, but also place some constraints on the received values
which are too strict with respect to the constraints they place on the receiving transitions. For
example, sends_sum_of_values+lazy contains two receiving transitions which store their values
in variables value1 and value2. The constraints on the receiving transitions only state that
the two values must be larger than zero. However, the deadlock is introduced by the constraint
value1 > 3. The environment might send a value 0 < x < 3 that is sufficient for the constraint
on the receiving transition, but not for the second constraint. As there are no other possible
transitions leaving the state between transitions b?, _value > 0ÐÐÐÐÐÐÐÐÐ→ and τ, value1 > 3ÐÐÐÐÐÐÐÐ→, the system
cannot continue from that state.

A different model is constrained_receive, which does not have a deadlock. The value that
is received and stored in value conforms to 0 < x < 100. The optional branch can be taken
whenever the received value is larger than 10 and continued when it is less than 100, but since
the constraint on the receiving transition already forces the received value to be less than 100, the
second constraint will always be satisfied when it is reached and therefor not cause a deadlock.

6.2.2 In-depth study of sends_sum_of_values+virtual

sends_sum_of_values+virtual (listing B.5) is a model that contains a deadlock. Its state graph
is shown in figure 6.1. There are two processes: the original process process_a and environment
process_a_env that was generated by the model closer. Both processes start at their start state
and independently from each other traverse their transitions, only syncing when one traverses a
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send and the other a corresponding receive transition. The original process receives two numbers
and stores them in variables value1 and value2. If these numbers are both greater than or equal
to 5, an optional branch may be taken and which can only be continued when the sum of these
numbers is 10. Of course, when these numbers are both equal to 5, then this optional branch cannot
be continued. This is a deadlock and is successfully detected by the LTSmin model checker.

Using the commands shown in listing 6.1, a user can access the counterexample for the deadlock.
Such a counterexample is a single path that leads from the initial state of the model to the deadlock.
Figure 6.2 shows the entire state space of the model with the counterexample highlighted in red.
This image was created manually and is based on LTSmin’s output. From this graph, several edges
have been omitted for clarity. These edges connect the leaves, except for the deadlock, to the root
through the _6

value1=0, value2=0ÐÐÐÐÐÐÐÐÐÐÐ→ start transition.

Listing 6.1: Commands for obtaining a counterexample

dve2lts -seq -d <model.dve > --trace=<trace.gcf >

ltsmin -printtrace <trace.gcf >

The states within this graph are shown with the vector representation that is internally used
by LTSmin. This notation contains for each process an element that stores the current state of
the process, and furthermore contains all process variables. For this model, the state vector is
⟨SA,value1A,value2A,tmpA, Senv,tmpenv⟩, where SA and Senv store the current locations of the
two processes. The two tmp variables are inserted by the DVE translator and the value1 and
value2 variables appear within the original STS model.

Looking at figure 6.2, one can see that the deadlock occurs when process_a is in state _2 and
the values of value1 and value2 are both equal to 5. As can be seen within 6.1, there is only one
transition that leaves state _2 and which can only be taken when the sum of value1 and value2

equals 11 or higher. The state space image also shows that there is a single configuration in which
this transition can be taken. This is the case when the received values are 5 and 6, and it is shown
by the rightmost part of the tree.
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Figure 6.1: State graph for model sends_sum_of_values+virtual
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Figure 6.2: State space for model sends_sum_of_values+virtual with the deadlock highlighted.
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Chapter 7

Evaluation and future work

This chapter contains an evaluation on how the project was executed and on the results that
were described in the previous chapter. We reflect on some of the decisions that were made and
previously listed in section 5.2, discuss the current limitations of the developed prototype and
finally list related and future work.

7.1 Evaluation
Reviewing the original research goals and the results that were obtained, we can claim that this
project was at least a minor success. The developed prototype shows that some of the STS models
can be verified for some of the verifiable properties (i.e. deadlocks). As support for LTL and CTL
verification are already available within the model checker, it should not require too much effort
to modify the prototype into making these features available as well. We may therefor argue that
some of the STS models can also be verified for deadlock-freedom and LTL-expressible properties.
There are some other issues that limit the effectiveness and applicability of the prototype, but we
will argue that once these issues have been resolved or bypassed, the developed prototype will be
a useful addition to the Axini workflow, as it should allow fast, automatic and correct verification
of the existing STS models.

The existing prototype can currently detect deadlocks within certain STS models. Such an
ability is useful for detecting the circumstances in which a model can escape or evade its main
cycle and reach a terminal state (n.b. all finite models without cycles have deadlocks, so we will
assume that all interesting STS models have cycles,) or enter a state from which it cannot leave due
to the specific values that are stored within the process or message variables. These deadlocks were
previously defined as explicit and implicit deadlocks respectively. While explicit deadlocks can be
readily detected by a manual inspection of the STS code (the final expression within an STS process
is reachable but is not within a cycle), detecting an implicit deadlock requires for every state an
enumeration of the values that can be stored in all process and message variables along with an
evaluation of the relevant transition constraints. An implicit deadlock is only discovered when the
evaluation has revealed that for a reachable state there exists a reachable value assignment to the
variables that prevents all of the transitions that leave this state from being traversed: none of
the available transitions can be taken until the values have been changed, but the values cannot
change until a transition is taken. An example of this was previously discussed in section 6.2.2
where { value1 ↦ 5,value2 ↦ 5 } is a reachable assignment and state _2 a reachable state, but
none of the transitions that leave _2 can be traversed given that assignment.

Implicit deadlocks can appear in reactive processes that internally do not account for all the
possible values that they receive. In other words: there exists an input that the process accepts but
cannot deal with. An ability to detect such issues within the models is a useful feature for Axini
as it allows the detection of missing behavior in models and the detection of constraints that are
too strict or too loose. Furthermore, if an STS model is shown to adhere to all SUT requirements,
but still contains deadlocks, then this issue could indicate that the requirements themselves are
not complete and need to be further developed.

As the prototype can currently only detect deadlocks, there is no support for the verification
of properties other than deadlock freedom. There are also several other issues that prevent the
prototype from becoming a part of the Axini workflow. The prototype is limited in the following
ways: a) LTL and CTL properties cannot be verified yet, b) the implemented model closing
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algorithm cannot deal with many STS models, and c) several software bugs cause the prototype
to terminate prematurely while closing a small group of models. While most of these limitations
can be removed without too much significant effort, developing a closing algorithm that can deal
with all possible STS models requires some theoretical effort to be made. Furthermore, there
are suggestions that there exist some STS models that cannot be model checked, or at least not
completely. These limitations are discussed more in-depth later in this section. The future work
that is necessary to deal with these issues is discussed in section 7.3 and in appendix C.

Assuming that future work is capable of dealing with these issues, then model checking can be of
significant use to Axini. If the SUT requirements can be converted to temporal logic formulas, then
the model can be automatically verified after the model or the requirements have been changed.
This operative independence could allow Axini and the other users of TestManager to place
more focus on ensuring that the SUT is correct as models can be developed and maintained in less
time. Such a shift would allow faster, or a more in-depth testing of the SUT, as less resources are
needed to verify the model. It is therefor important to continue with this project and improve the
prototype so that it becomes a useful, stable, reliable and fast component.

7.1.1 Existing Issues
What follows is a list of the issues that still trouble the prototype. Some of them need to be fixed
before the prototype can be incorporated within the Axini workflow. Others, such as the effects of
the DVE restructuring, need to be considered when checking for deadlock freedom. Future work
needed to deal with these issues is discussed in section 7.3.

• Model checking cannot deal with STS models that have an underlying infinite labeled transi-
tion system. For several kinds of properties, model checkers have to examine every state of
the transition system before they can declare that the system is correct. This would mean
that for infinitely large transition systems, the model checker can never terminate and the
problem of model checking be undecidable. However, the process will terminate if the model
contains a counterexample to the property, or when the property can be verified by only
examining a finite subset of the state space. A possible future approach that only checks a
subset of the state space is bounded model checking [6], which only inspects the states that
are a certain predetermined distance away from the initial states.

• The prototype cannot deal with models in which the updates and constraints can be normal-
ized to infinitely long expressions. As was previously described in section 5.8.1, the model
checker generates a maximum environment by gathering all the constraint paths and gener-
ating the values that will keep all paths traversable as well as retain all deadlocks. These
constraint paths are finite collections of constraint expressions, which need to be finite them-
selves if a constraint solver were to generate the solutions.

• The prototype cannot deal with models that use datatypes other than integers. Translating
the various datatypes to non-negative integers, not only requires a mapping of non-N0 values
to non-negative integers, but also a translation of the datatype-specific operators such as
string concatenation.

• The prototype cannot deal with processes that communicate values to each other over an
internal channel. Again, as was previously explained in 5.8.1, the model closing algorithm
only analyses each process independently. To correctly close such a process, its behavior to
its neighbors should also be retained, and so the static analysis needs to enter the neighbors
and determine which values the transmitting process needs to remain sending to keep its
neighbors’ behavior identical.

• The implemented bisimilar minimization algorithm (Kanellakis and Smolka’s [35]) was orig-
inally designed for labeled transition systems, but is executed on the internal Ruby runtime
representation of STS, i.e. a symbolic transition system. There are several consequences of
this, one consequence is that the result is not necessarily the minimal bisimilar model.

• The graph restructuring that is necessary to translate STS to DVE replaces certain deadlocks
with inescapable progressless cycles. Deadlock detection can not detect these issues, but
certain liveness properties still can.

• The current implementation is too slow. It is uncertain where the bottlenecks are, but the
algorithms were not designed to be efficient.
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• The prototype contains several issues that cause it to prematurely terminate when it is model
checking certain models. One of such models is SCRP, an industrial model that was available
during this project and developed by Axini. The set of models for which the prototype crashes
is small in comparison to the set of models that are in scope and do not cause the prototype
to crash.

7.1.2 Reflecting on Decisions
Previously in this document, a list of decisions was discussed that affected the design, implemen-
tation and scope of the prototype. In this section, we reflect upon these decisions.

The most important decision was to limit the scope of the closing algorithm. This allowed
us to develop a small and relatively simple algorithm within the available time, while still being
able to handle certain complex models. However, this was at the cost of reduced applicability.
Future work can be done to remove or relax this limit, thereby allowing more or all STS models
to be model checked. For some of the models that cannot be completely checked, it might still be
possible to only verify them up to a certain extent. Also, due to the fact that we were capable of
generating a working algorithm with reduced effort, we were also capable of developing the entire
framework that surrounds the closing algorithm. Together with the closing algorithm, the entire
framework can model check the models that are accepted by the model closer.

It is often better to initially focus on developing a small, but working prototype. This prototype
would be able of demonstrating the potential of its approach, and allow the developers to detect
and deal with any important issues prematurely.

Another important decision is to generate only correct results. There are some other approaches
to the problem of model checking open models, which accept the existence of false negatives. We
have deemed such results to be detrimental to the adoption of automatic model checking into the
Axini workflow. Forcing the user to manually verify the results that are produced by the prototype,
introduces again the element of uncertainty that we wanted to cast out by using formal methods,
both also requires more of the user’s effort into maintaining the model. Future work should either
ensure that the properties remain correct, or add a method with which the user can differentiate
false from true results.

The decision to use DVE as in the intermediate model specification had both positive and
negative effects. It requires relatively less effort to design and implement a system that converts
the output of the model closer to DVE, than it would have for e.g. the Promela language. However,
translating an STS model to DVE requires the message receiving transitions to be modified, as their
guards may not refer to the message variables, but only to the process variables. The implemented
restructuring retains the guards and their effects, but also removes certain deadlocks from the
model. The effect of this restructuring can not be demonstrated by the current prototype, as this
effect only appears when two processes attempt to communicate over an internal channel, and
models that contain such processes fall outside the scope of the model closing algorithm.

Finally, the decision to use LTSmin and not another model checker has not significantly affected
the prototype thus far. However, once the previously listed limitations have been removed, LTSmin
will be a better choice for the prototype than DiVinE or SPIN as LTSmin outperforms both by a
significant margin in both execution speed, and the size of the models that it can deal with.

7.1.3 Research
We start this section by repeating the two questions that were raised in the introduction (section
1.3).

• Can we model check STS models?

• How can an open model be properly closed?

A positive answer to the first question has been demonstrated by the prototype: STS models
can be model checked. Our approach uses a publicly available model checker and transforms the
model so that it is accepted by the selected model checker. Furthermore, an answer to this question
can be brought about in the following way:

• SUT requirements can be translated to formulas of temporal logic. A model checker can
check whether a labeled transition system is correct with respect to the specified property.

• STS models encode symbolic transition systems, these can be converted to labeled transition
systems.
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Together, these two parts suggest that STS models can be checked with respect to the SUT re-
quirements. Unfortunately, not all STS models can be model checked. Only those STS models that
can be correctly translated to a finite labeled transition system, which would consist of a finite
number of states and transitions, can be model checked as a model checker can only deal with
finite systems. Such infinite models can be very trivial, for example, listing 5.6 contains such a
model that cannot be completely model checked. However, if a STS model were to be altered so
that it would produce a finite labeled transition system then such a model can be model checked,
but this could possibly produce fictitious results.

Future research is needed to answer three new questions:

Future Research Question 1. How to detect whether an STS model produces an infinite labeled
transition system?

Future Research Question 2. How to alter an STS model with a infinite labeled transition system
so that it has a finite labeled transition system, without losing the properties or retaining as many
properties as possible?

Future Research Question 2a. If this method allows for false results from the model checker,
how could we detect them as such?

A possible alternative approach would be to avoid transforming the STS model to a labeled
transition system and directly model check the symbolic transition system instead. Furthermore,
it seems that this approach would allow data to be preserved so that models that use datatypes
other than integers, can be reliably model checked.

Future Research Question 3. What is the current research on model checking symbolic transi-
tion systems?

Future Research Question 3b. Is existing work in this field sufficient for model checking models
with data?

Future Research Question 3c. Does existing work in this field make for a viable alternative to
the current approach of model checking labeled transition systems?

As for the second question mentioned in the introduction, we have uncovered several approaches
to model closing. Essential to such attempts is the confinement of the external decisions, the
resulting model which then only contain internal decisions and won’t depend upon external agents
for its specific behavior. The approaches that are relevant for this project are the following:

• Inserting the maximum environment as a process or set of processes. This is the standard
approach, but is susceptible to the state explosion problem [33]. To minimize the resulting
state explosion, our approach tried to produce a minimal process that could still represent
the maximum environment.

• Chaos embedding, which closes the model by removing the guards that refer to externally-
influenced variables and the transitions that perform the external communication [49]. The
effect is that the external decisions will no longer have any effect on the model. However,
this approach can generate many false negatives, and was therefor not selected.

There are several other approaches, such as module checking [36], which we’re not deemed relevant
to this project as we trying to use a standard model checker to do the actually task of verifying
the models.

As the implemented approach doesn’t necessarily generate the smallest environment process,
new research is needed to determine how such a smallest maximum environment can be generated.
As this generation needs to be performed for every version of an STS model, this process should be
done in a sufficiently quick matter so that it can be a valuable tool during the model development.
Furthermore, this future approach to model closing should also either retain the model properties,
or allow for a method that can discern between the verification results that are fictitious and those
that aren’t.

Future Research Question 4. How can the smallest process be generated which represents the
maximum environment for the given model?

Future Research Question 4d. If this method allows for false results from the model checker,
how could we detect them as such?
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7.2 Related Work
No research has been found that has tried to model check test models. However, as STS test models
are a specific form of open or reactive models, we were able to find related work on model checking
such models.

Mocha1 is a publicly available model checker that tests reactive models that are written in
the ReactiveModules language [2]. The verifiable properties have to be specified in alternative
temporal logic (ATL).

A separate approach that uses a more standard model checker has been proposed by Sidorova
et al. [49, 50]. This approaches transforms open models so that they become closed, and then
uses an existing standard model checker, such as SPIN, to verify the properties. Their approach
abstract a model to a safe abstraction by removing all externally-influenced variables and exter-
nal communication. The resulting model could possess more behavior than the original, and so
certain properties could have become lost. However, certain precautions are made so that positive
verification results remain accurate.

Another approach by Kupferman and Vardi is called module checking [36, 37]. The set of
states of a module, or open model, are separated into the environment states and the system
states, from where the environment and the system make their transitions respectively. They then
discuss algorithms for the verification of CTL and CTL* formulas in such modules, but refrain
from discussing practical applications.

Finally, the approach that we used to close a model is similar to boundary value analysis, which
is used in software testing [43]. The important common aspect is that both approaches split the
set of input values into various, possibly non-overlapping, subsets and then select a single value
from each subset. However, where boundary value analysis selects the values that are on or near
the boundaries between the separated sets, the approach used in this project can select any value
from a subset to represent its subset.

7.3 Future Work
Future work that is necessary for the continuation of this project consists of the following actions:

1. Fix the issues that are listed in section 7.1.1 and in appendix C.

2. Solve the research questions that are presented in section 7.1.3.

Some other tasks that are not necessary but would help the integration of the prototype into the
Axini workflow, or would improve the execution speed are the following:

1. To ease the integration:

(a) Convert SUT requirements to LTL or CTL formulas.

(b) Convert LTL or CTL formulas to an STS model skeleton. Emerson’s dissertation and
some of his early work with Clarke would be a good starting point [24, 16, 26].

2. Investigate whether deadlocks can be accurately detected during model closing.

3. Combine the current model closing approach with elements from chaos insertion [49]. If some
models cannot be closed by inserting an environment process, we can perhaps still close the
model by removing the influenced variables.

1http://www.cis.upenn.edu/m̃ocha/
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Chapter 8

Conclusion

During the execution of this project we have tried to enable model checking for automated test
models, or STS models. This project was a partial success, as we managed to show that this
approach is possible for some STS models, and have listed several approaches to deal with the STS

models that we haven’t been able to close.
However, in its current state, the developed cannot be integrated into the Axini workflow.

Future work is needed to deal with the issues that were previously listed. Once these issues have
been dealt with, model checking can become a valuable tool that could perhaps alter the way in
which Axini constructs test models and also allow them to spend more effort on testing the models.

The main issue that hinders the integration, is that the prototype cannot deal with many
STS models. Most of these issues originate from the algorithm that was used to close the models.
Several alternative approaches have been discussed that may resolve this issue, but such approaches
should try to retain the model properties so that when the model checker is integrated into the
workflow: it should only produce results that are reliable.

50



Chapter 9

Bibliography

[1] L. Aceto, A. Ingolfsdottir, and J. Srba. The algorithmics of bisimilarity. In D. Sangiorgi and
J. Rutten, editors, Advanced Topics in Bisimulation and Coinduction, Cambridge Tracts in
Theoretical Computer Science. Cambridge University Press, 2012.

[2] R. Alur, T. A. Henzinger, F. Y. C. Mang, S. Qadeer, S. K. Rajamani, and S. Tasiran. MOCHA:
Modularity in model checking. In A. J. Hu and M. Y. Vardi, editors, Computer Aided Veri-
fication, volume 1427 of Lecture Notes in Computer Science, pages 521–525. Springer Berlin
Heidelberg, 1998.

[3] C. Baier and J. P. Katoen. Principles of Model Checking, volume 950. MIT Press, Cambridge,
MA, USA, 2008.

[4] J. Barnat, L. Brim, V. Havel, J. Havlíček, J. Kriho, M. Lenčo, P. Ročkai, V. Štill, and J. Weiser.
DiVinE 3.0 – An Explicit-State Model Checker for Multithreaded C & C++ Programs. In
N. Sharygina and H. Veith, editors, Computer Aided Verification, volume 8044 of Lecture
Notes in Computer Science, pages 863–868. Springer Berlin Heidelberg, 2013.

[5] G. Behrmann, A. David, and K. G. Larsen. A Tutorial on Uppaal. In M. Bernardo and
F. Corradini, editors, Formal Methods for the Design of Real-Time Systems, volume 3185 of
Lecture Notes in Computer Science, pages 200–236. Springer Berlin Heidelberg, 2004.

[6] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic Model Checking without BDDs. In
W. R. Cleaveland, editor, Tools and Algorithms for the Construction and Analysis of Systems,
volume 1579 of Lecture Notes in Computer Science, pages 193–207. Springer Berlin Heidelberg,
1999.

[7] S. C. C. Blom and J. C. van de Pol. Symbolic Reachability for Process Algebras with Recursive
Data Types. In J. S. Fitzgerald, A. E. Haxthausen, and H. Yenigun, editors, Theoretical
Aspects of Computing - ICTAC 2008, volume 5160 of Lecture Notes in Computer Science,
pages 81–95. Springer Berlin Heidelberg, 2008.

[8] S. C. C. Blom, J. C. van de Pol, and M. Weber. Bridging the Gap between Enumerative and
Symbolic Model Checkers, June 2009.

[9] S. C. C. Blom, J. C. van de Pol, and M. Weber. LTSmin: Distributed and Symbolic Reacha-
bility. In T. Touili, B. Cook, and P. Jackson, editors, Computer Aided Verification, Edinburgh,
volume 6174 of Lecture Notes in Computer Science, pages 354–359. Springer Verlag, Berlin,
July 2010.

[10] F. Bonchi and U. Montanari. Minimization Algorithm for Symbolic Bisimilarity. In
G. Castagna, editor, Programming Languages and Systems, volume 5502 of Lecture Notes
in Computer Science, pages 267–284. Springer Berlin Heidelberg, 2009.

[11] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic Model
Checking: 1020 States and Beyond. In A. R. Meyer, editor, Information and Computation,
volume 98, pages 142–170. Elsevier, 1992.

[12] J. Calamé, N. Ioustinova, J. C. van de Pol, and N. Sidorova. Bug Hunting with False Negatives.
In J. Davies and J. Gibbons, editors, Integrated Formal Methods, volume 4591 of Lecture Notes
in Computer Science, pages 98–117. Springer Berlin Heidelberg, 2007.

51



[13] G. Ciardo, G. Lüttgen, and R. Siminiceanu. Efficient Symbolic State-Space Construction for
Asynchronous Systems. In M. Nielsen and D. Simpson, editors, Application and Theory of
Petri Nets 2000, volume 1825 of Lecture Notes in Computer Science, pages 103–122. Springer
Berlin Heidelberg, 2000.

[14] G. Ciardo, G. Lüttgen, and R. Siminiceanu. Saturation: An Efficient Iteration Strategy for
Symbolic State Space Generation. In T. Margaria and W. Yi, editors, Tools and Algorithms
for the Construction and Analysis of Systems, volume 2031 of Lecture Notes in Computer
Science, pages 328–342. Springer Berlin Heidelberg, 2001.

[15] E. M. Clarke. The Birth of Model Checking. In O. Grumberg and H. Veith, editors, 25
Years of Model Checking, volume 5000 of Lecture Notes in Computer Science, pages 1–26.
Springer-Verlag Berlin Heidelberg, 2008.

[16] E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization skeletons using
branching time temporal logic. In D. Kozen, editor, Logics of Programs, volume 131 of Lecture
Notes in Computer Science, pages 52–71. Springer Berlin Heidelberg, 1982.

[17] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Progress on the State Explosion
Problem in Model Checking. In R. Wilhelm, editor, Informatics, volume 2000 of Lecture Notes
in Computer Science, pages 176–194. Springer Berlin Heidelberg, 2001.

[18] E. M. Clarke, O. Grumberg, and D. E. Long. Model checking and Abstraction. In A. W.
Appel, editor, ACM Transactions on Programming Languages and Systems, volume 16, pages
1512–1542. ACM, New York, NY, USA, 1994.

[19] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, Cambridge, MA,
USA, 1999.

[20] E. M. Clarke, K. L. McMillan, S. Campos, and V. Hartonas-Garmhausen. Symbolic Model
Checking. In R. Alur and T. A. Henzinger, editors, Computer Aided Verification, volume 1102
of Lecture Notes in Computer Science, pages 419–422. Springer Berlin Heidelberg, 1996.

[21] C. Courcoubetis, M. Vardi, P. Wolper, and M. Yannakakis. Memory Efficient Algorithms
for the Verification of Temporal Properties. In E. M. Clarke and R. P. Kurshan, editors,
Computer-Aided Verification, volume 531 of Lecture Notes in Computer Science, pages 233–
242. Springer Berlin Heidelberg, 1991.

[22] A. E. Dalsgaard, A. W. Laarman, K. G. Larsen, M. C. Olesen, and J. C. van de Pol. Multi-
Core Reachability for Timed Automata. In M. Jurdzinski and D. Nickovic, editors, 10th
International Conference on Formal Modeling and Analysis of Timed Systems, FORMATS
2012, London, UK, volume 7595 of Lecture Notes in Computer Science, pages 91–106, London,
September 2012. Springer Verlag.

[23] E. W. Dijkstra. Structured programming. circulated privately, August 1969.

[24] E. A. Emerson. Branching time temporal logic and the design of correct concurrent programs.
PhD thesis, Division of Applied Sciences, Harvard University, 1981.

[25] E. A. Emerson. The Beginning of Model Checking: A Personal Perspective. In O. Grumberg
and H. Veith, editors, 25 Years of Model Checking, volume 5000 of Lecture Notes in Computer
Science, pages 27–45. Springer Berlin Heidelberg, 2008.

[26] E. A. Emerson and E. M. Clarke. Using Branching Time Temporal Logic to Synthesize
Synchronization Skeletons. In Science of Computer Programming, volume 2, pages 241 – 266.
Elsevier, 1982.

[27] E. A. Emerson and J. Y. Halpern. “Sometimes” and “Not Never” Revisited: on Branching
versus Linear Time Temporal Logic. In M. J. Fischer, editor, Journal of the ACM, volume 33,
pages 151–178. ACM, New York, NY, USA, 1986.

[28] L. Frantzen, J. Tretmans, and T. A. C. Willemse. Test Generation Based on Symbolic Spec-
ifications. In J. Grabowski and B. Nielsen, editors, Formal Approaches to Software Testing,
volume 3395 of Lecture Notes in Computer Science, pages 1–15. Springer Berlin Heidelberg,
2005.

52



[29] L. Frantzen, J. Tretmans, and T. A. C. Willemse. A Symbolic Framework for Model-Based
Testing. In K. Havelund, M. Núñez, G. Roşu, and B. Wolff, editors, Formal Approaches
to Software Testing and Runtime Verification, volume 4262 of Lecture Notes in Computer
Science, pages 40–54. Springer Berlin Heidelberg, 2006.

[30] R. Gerth, D. Peled, M. Y. Vardi, and P. Wolper. Simple On-the-fly Automatic Verification
of Linear Temporal Logic. In P. Dembinsky and M. Sredniawa, editors, Proceedings of the
Fifteenth IFIP WG6.1 International Symposium on Protocol Specification, Testing and Veri-
fication XV, pages 3–18, London, UK, UK, 1996. Chapman & Hall, Ltd.

[31] G. J. Holzmann. The model checker SPIN. In R. A. Kemmerer, L. K. Dillon, and S. Sankar,
editors, IEEE Transactions on Software Engineering, volume 23, pages 279–295. IEEE Press,
Piscataway, NJ, USA, 1997.

[32] G. J. Holzmann. the SPIN Model Checker: Primer and Reference Manual. Addison-Wesley
Professional, first edition, 2003.

[33] N. Ioustinova, N. Sidorova, and M. Steffen. Synchronous Closing and Flow Analysis for Model
Checking Timed Systems. In F. S. Boer, M. M. Bonsangue, S. Graf, and W-P. Roever, editors,
Formal Methods for Components and Objects, volume 3188 of Lecture Notes in Computer
Science, pages 292–313. Springer Berlin Heidelberg, 2004.

[34] M. Jonge and T. C. Ruys. The SpinJa model checker. In J. van de Pol and M. Weber, editors,
Model Checking Software, volume 6349 of Lecture Notes in Computer Science, pages 124–128.
Springer Berlin Heidelberg, 2010.

[35] P. C. Kanellakis and S. A. Smolka. CCS Expressions, Finite State Processes, and Three
Problems of Equivalence. In Proceedings of the Second Annual ACM Symposium on Principles
of Distributed Computing, PODC ’83, pages 228–240, New York, NY, USA, 1983. ACM.

[36] O. Kupferman and M. Y. Vardi. Module Checking. In R. Alur and T. A. Henzinger, editors,
Computer Aided Verification, volume 1102 of Lecture Notes in Computer Science, pages 75–86.
Springer Berlin Heidelberg, 1996.

[37] O. Kupferman and M. Y. Vardi. Module Checking Revisited. In O. Grumberg, editor, Com-
puter Aided Verification, volume 1254 of Lecture Notes in Computer Science, pages 36–47.
Springer Berlin Heidelberg, 1997.

[38] A. W. Laarman and D. Faragó. Improved On-The-Fly Livelock Detection. In G. Brat,
N. Rungta, and A. Venet, editors, NASA Formal Methods, volume 7871 of Lecture Notes in
Computer Science, pages 32–47. Springer Berlin Heidelberg, 2013.

[39] A. W. Laarman, R. Langerak, J. C. van de Pol, M. Weber, and A. Wijs. Multi-core Nested
Depth-First Search. In T. Bultan and P-A. Hsiung, editors, Proceedings of the 9th Inter-
national Symposium on Automated Technology for Verification and Analysis, ATVA 2011,
Tapei, Taiwan, volume 6996 of Lecture Notes in Computer Science, pages 321–335, London,
July 2011. Springer Verlag.

[40] A. W. Laarman, J. C. van de Pol, and M. Weber. Boosting Multi-Core Reachability Per-
formance with Shared Hash Tables. In N. Sharygina and R. Bloem, editors, Proceedings of
the 10th International Conference on Formal Methods in Computer-Aided Design, Lugano,
Switzerland, pages 247–256, USA, October 2010. IEEE Computer Society.

[41] A. W. Laarman, J. C. van de Pol, and M. Weber. Multi-Core LTSmin: Marrying Modularity
and Scalability. In M. Bobaru, K. Havelund, G. Holzmann, and R. Joshi, editors, NASA
Formal Methods, volume 6617 of Lecture Notes in Computer Science, pages 506–511. Springer
Verlag, Berlin, July 2011.

[42] L. Lamport. “Sometime” is Sometimes “Not Never”: On the Temporal Logic of Programs.
In Proceedings of the 7th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, POPL ’80, pages 174–185, New York, NY, USA, 1980. ACM.

[43] G. J. Myers and C. Sandler. The Art of Software Testing. John Wiley & Sons, 2004.

53



[44] R. Nicola and F. Vaandrager. Action versus State based Logics for Transition Systems. In
I. Guessarian, editor, Semantics of Systems of Concurrent Processes, volume 469 of Lecture
Notes in Computer Science, pages 407–419. Springer Berlin Heidelberg, 1990.

[45] R. Pelánek. BEEM: Benchmarks for Explicit Model Checkers. In D. Bošnački and S. Edelkamp,
editors, Model Checking Software, volume 4595 of Lecture Notes in Computer Science, pages
263–267. Springer Berlin Heidelberg, 2007.

[46] A. Pnueli. The temporal logic of programs. In Proceedings of the 18th Annual Symposium
on Foundations of Computer Science, SFCS ’77, pages 46–57, Washington, DC, USA, 1977.
IEEE Computer Society.

[47] J. P. Queille and J. Sifakis. Specification and verification of concurrent systems in CESAR. In
M. Dezani-Ciancaglini and U. Montanari, editors, International Symposium on Programming,
volume 137 of Lecture Notes in Computer Science, pages 337–351. Springer Berlin Heidelberg,
1982.

[48] T. L. Siaw. Saturation for LTSmin. Master’s thesis, Universiteit Twente, February 2012.

[49] N. Sidorova and M. Steffen. Embedding Chaos. In P. Cousot, editor, Static Analysis, volume
2126 of Lecture Notes in Computer Science, pages 319–334. Springer Berlin Heidelberg, 2001.

[50] N. Sidorova and M. Steffen. Verifying Large SDL-Specifications Using Model Checking. In
R. Reed and J. Reed, editors, SDL 2001: Meeting UML, volume 2078 of Lecture Notes in
Computer Science, pages 403–420. Springer Berlin Heidelberg, 2001.

[51] B. Stewart. An interview with the creator of ruby. http://www.linuxdevcenter.com/pub/

a/linux/2001/11/29/ruby.html, 2001. Accessed: 2014-02-06.

[52] J. Tretmans and E. Brinksma. TorX: Automated Model-Based Testing. In A. Hartman and
K. Dussa-Ziegler, editors, First European Conference on Model-Driven Software Engineering,
pages 31–43, December 2003.

[53] F. I. van der Berg and A. W. Laarman. SpinS: Extending LTSmin with Promela through
SpinJa. In K. Heljanko and W. J. Knottenbelt, editors, 11th International Workshop on
Parallel and Distributed Methods in verifiCation, PDMC 2012, London, UK, volume 296
of Electronic Notes in Theoretical Computer Science, pages 95–105, Amsterdam, September
2012. Elsevier.

[54] M. van der Bijl. On changing models in Model-Based Testing. PhD thesis, Universiteit Twente,
May 2011.

[55] T. van Dijk. The Parallelization of Binary Decision Diagram operations for model checking.
Master’s thesis, Universiteit Twente, April 2012.

[56] T. van Dijk, A. W. Laarman, and J. C. van de Pol. Multi-core and/or Symbolic Model
Checking. In G. Lüttgen and S. Merz, editors, 12th International Workshop on Automated
Verification of Critical Systems, AVoCS 2012, Bamberg, Germany, volume 53 of Electronic
Communications of the EASST, pages 773:1–773:7, Berlin, September 2012. EASST.

[57] M. Y. Vardi. An Automata-Theoretic Approach to Linear Temporal Logic. In F. Moller and
G. Birtwistle, editors, Logics for Concurrency, volume 1043 of Lecture Notes in Computer
Science, pages 238–266. Springer Berlin Heidelberg, 1996.

[58] M. Y. Vardi. Branching vs. Linear Time: Final Showdown. In T. Margaria and W. Yi, editors,
Tools and Algorithms for the Construction and Analysis of Systems, volume 2031 of Lecture
Notes in Computer Science, pages 1–22. Springer Berlin Heidelberg, 2001.

[59] B. Venners. Dynamic productivity with ruby. http://www.artima.com/intv/tuesday.html,
2003. Accessed: 2014-02-06.

[60] B. Venners. The philosophy of ruby. http://www.artima.com/intv/ruby.html, 2003. Ac-
cessed: 2014-02-06.

54

http://www.linuxdevcenter.com/pub/a/linux/2001/11/29/ruby.html
http://www.linuxdevcenter.com/pub/a/linux/2001/11/29/ruby.html
http://www.artima.com/intv/tuesday.html
http://www.artima.com/intv/ruby.html


Appendix A

The STS language

STS is a domain specific language designed to formally express the behavior of a System Under
Test. Axini uses this language to model existing systems. These systems communicate with their
environment, or more specifically, with other systems within that environment. STS allows an
engineer to model the behavior of a system by specifying the messages that the system responds
to, the messages that the system can emit, and the internal process that defines how and when the
system communicates.

An STS model expresses a forest of directed graphs, in particular, it expresses a set of symbolic
transition systems. These represent multiple processes (but a valid model contains at least one,)
which can operate independently from each other, and these processes communicate with each
other by passing messages. When a message is passed, both the receiving and sending process
synchronously take an event-emitting transition. As both the receiving and sending process can
place constraints on these transitions, the message can only be passed, and the transitions can only
be taken, when both constraints permit this.

There are several languages that are similar to STS in their intent. That is, they are designed to
allow engineers to express the behavior and internal processes of a system. Promela is a modelling
language that was designed for use with the SPIN model checker. As a model checker, SPIN can
verify whether a model adheres to certain desired properties. This model doesn’t need to represent
an implemented system as it is the model itself which is being verified.

The important commonalities between STS and Promela are

• Processes are the top-level entities. These operate independently from each other.

• Processes can have variables.

• Communication between processes is done through messages.

• Messages can carry values

The important differences

• Promela supports process creation and termination. The processes defined in the STS model
start executing simultaneously. STS processes can terminate, but only in a deadlock.

• STS doesn’t require that the values that are communicated are concretely specified, Test-
Manager works with a constraint solver to determine the appropriate values.

As a language, STS is an extension of the Ruby programming language and the interpretation is
mostly done by the standard Ruby interpreter. The STS extension defines several specific keywords
and Ruby interprets these keywords as method calls. During the interpretation, the called methods
alter the representation of the model that is internal to the Ruby runtime. They create new State
or Transitions objects and these are combined to form a symbolic transition system.

Finally, while STS can support asynchronous communication, we only consider synchronous
communication. Also, while STS provides a wide set of datatypes, we only use the integer datatype
in our examples. STS’s support for timed automata is also not discussed in this document.
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A.1 Channels and Processes
The top level elements of an STS model are the channels, which are declared at the top of the
model, and the processes. A channel has a unique name, and is either internal or external. Internal
channels are pathways for (invisible) communication between the processes defined in the model,
while external channels are meant for observable communication with entities outside the model.
A model that receives messages over an external channel is an open system, as its behavior now
depends on decisions that are not included within the model.

Following the channel declarations are the processes. Each is also identified with a unique
name. A process declaration consists of its private variables, a listing of the messages it sends or
receives, and finally a specification of its behavior.

Listing A.1 shows an open STS model with two communicating processes. These processes are
defined with the sts keyword, and two processes communicate with each other through send and
receive statements.

Listing A.1: Declaration of simple open model with two communicating processes.

external 'an_external_channel '

internal 'an_internal_channel '

sts('process_a ') {

stimulus 'public_message_for_a ', {}, 'an_external_channel '

channel('an_internal_channel ') {

stimulus 'private_message_for_a '

response 'private_message_for_b '

}

state 'start '

receive 'public_message_for_a '

send 'private_message_for_b '

receive 'private_message_for_a '

goto 'start '

}

sts('process_b ') {

channel('an_internal_channel ') {

response 'private_message_for_a '

stimulus 'private_message_for_b '

}

state 'start '

receive 'private_message_for_b '

send 'private_message_for_a '

goto 'start '

}

Processes can have variables to hold values. All variables are assigned a value when the process
starts. If no value is specified, the default value for the corresponding datatype (e.g. 0 for integer)
is assigned. The values in these variables can be transmitted along with messages, or can be used
in constraint or update expressions. Listing A.2 shows an inactive process with two integer
variables, both holding the same value.

Listing A.2: Process with integer variables.

sts('process_a ') {

var 'var_1 ', :integer

var 'var_2 ', :integer , 0

}

A.2 Communication
Communication between two processes happens when a message is sent from one to the other.
When process PA is at a certain state from where it can make a transition when it receives the
message m and another process PB is at a certain state from where it can make a transition
by sending the message m, then the processes PA and PB can communicate the message m by
synchronously taking these transitions from their current states. In STS, the receive and send

constructs denote such transitions. Every message is named and assigned to the channel over which
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they are transmitted. At the start of the process definition, following the variable declarations, a
process lists the messages that it sends or receives, along with the channels over which sends or
receives them respectively. In listing A.1, process_a communicates over an internal channel with
process_b and over the external channel with an entity not defined within the model. The two
messages that process_a can receive are expressed with the stimulus keyword and response is
used to denote the message that it sends.

Messages can carry values. A process that receives a valued message can either directly store
this value inside a state variable, use it to alter a state variable, or ignore the value while still
making the transition. Listing A.3 gives an example of these three applications.

Listing A.3: A process that can do three different things with the received value.

external 'a_channel '

sts('process_a ') {

var 'value ', :integer

stimulus 'a_message ', {'v' => :integer}, 'a_channel '

state 'start '

choice {

o { receive 'a_message ', { :constraint => 'v >= 0',

:update => 'value = v;' }}

o { receive 'a_message ', { :constraint => 'v >= 0',

:update => 'value = value + v;' }}

o { receive 'a_message ', { :constraint => 'v >= 0' }}

}

goto 'start '

}

Receive and send transitions for valuated messages must specify which values they can receive
or send respectively. This is done by placing a constraint on the message variable. The three receive
transitions in listing A.3 each require a non-negative integer to be passed. These transitions will
not be taken if an external process passes a negative number.

If the receiving and sending transitions communicate the same message and both place different
constraints on the message variable, then the value domains specified by the two constraints must
overlap if the message were to be send. If the value constraint of the receiving transition does not
overlap with the value constraint of the sending transition, then both transitions cannot be taken as
no message can be passed. If the value domains do overlap, then the value that is transmitted will
be selected from the shared domain. Listing A.4 shows two processes that can only communicate
the value 4, even though this value is not explicitly specified.

Listing A.4: Two processes that only communicate the value 4.

internal 'a_channel '

sts('process_a ') {

stimulus 'a_message ', {'_value ' => :integer}, 'a_channel '

state 'start '

receive 'a_message ', { :constraint => '_value < 5' }

goto 'start '

}

sts('process_b ') {

response 'a_message ', {'_value ' => :integer}, 'a_channel '

state 'start '

send 'a_message ', { :constraint => '_value > 3' }

goto 'start '

}

57



A.3 Control flow
Constraints on transitions can either restrict the value of a message or prohibit the transition from
being taken within the current configuration of the process. Such a configuration is defined only
in terms of process variables and their values. A constraint of the latter form would therefor have
to refer to such variables and only allow the transition to be taken when the referred-to variables
store acceptable values.

When a process is at a state from which it can only leave through a transition for which the
constraint does not the hold, the process is in a deadlock. As the blocking constraint refers to
the process configuration, and the process configuration can only be altered by taking transitions,
this deadlock is permanent. Branching the control flow is an essential construct for avoiding this
as it enables the specification of multiple transitions that lead out from the same state. These
transitions don’t need to lead towards the same state and each can be associated to a different
constraint or effect expression. In STS, diverging branches are denoted with choice which allows
an arbitrary number of branches from the state in which the choice was declared. Listing A.5
shows an STS fragment in which for any process configuration, either both or a single one of the
branches can be navigated because there exists process configurations in which both constraints
allow navigation. Listing A.6 shows an if/else statement encoded in STS, the else branch has a
constraint that is the negation of the if-constraint. If the else-constraint was omitted or different,
then the else branch could have been followed even when the if-constraint was permissive and that
is not what an if/else statement is. Finally, listing A.7 shows an STS choice fragment along with
its syntactic sugar.

Listing A.5: An STS fragment that sometimes allows two branches to be taken.

choice {

o { constraint 'value < 8'

send 'value_is_smaller_than_8 ' }

o { constraint 'value > 5'

send 'value_is_larger_than_5 ' }

}

Listing A.6: An STS fragment that models an if/else statement

choice {

o { constraint 'value < 8'

send 'value_is_smaller_than_8 ' }

o { constraint 'value >= 8'

send 'value_is_not_smaller_than_5 ' }

}

Listing A.7: An STS fragment that models an optional branch along with its syntactic sugar.

choice {

o { constraint 'value < 8'

send 'value_is_smaller_than_8 ' }

o { }

}

optional {

constraint 'value < 8'

send 'value_is_smaller_than_8 '

}

All branches of the choice meet again at the state directly after the choice unless the branches
leave the choice construct with a goto, or enters an inescapable loop.

Under the assumption that STS models are finite, processes that do not use loops will eventually
terminate as all possible paths within the process consists of finite steps. STS supports both an
explicit and an implicit loop construct. The explicit method uses the repeat keyword to denote
a set of instructions that will be repeated indefinitely until an escape with the stop_repetition

or goto keywords. The implicit method uses goto to return to the start of the loop. Listing A.8
gives an example of an explicit loop where for each iteration, one out of two separate paths can
be taken, and where one path always ends outside the loop. Listing A.9 gives an example of an
implicit repeat, using goto to both return to the start and to escape.
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Listing A.8: An STS fragment with an explicit loop

repeat {

o { send 'stay_in_loop ' }

o { send 'will_quit_loop '; stop_retition }

}

send 'escaped_loop '

Listing A.9: An STS fragment that shows an implicit loop equivalent to the one in listing A.8.

state 'start_loop '

choice {

o { send 'stay_in_loop '; goto 'start_loop ' }

o { send 'will_quit_loop '; goto 'outside_loop ' }

}

state 'outside_loop '

send 'escaped_loop '

Finally, the last important keyword is update which is used to assign a value to a process
variable. See listing A.10 for a small assign the integer 5 to a process variable.

Listing A.10: An STS fragment that shows how a process value could be capped to 5.

choice {

o { constraint 'value > 5'

update 'value = 5;' }

o { constraint 'value <= 5' }

}
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Appendix B

Selected Models

Listing B.1: sends

external 'channel_a '

sts('process_a ') {

var 'value ', :integer , 0

channel('channel_a ') {

response 'a', {'_value ' => :integer}

}

state 'start '

update 'value = 10;'

send 'a', { :constraint => '_value == value ' }

}

Listing B.2: sends+loop

external 'channel_a '

sts('process_a ') {

var 'value ', :integer , 0

channel('channel_a ') {

response 'a', {'_value ' => :integer}

}

state 'start '

repeat {

o {

update 'value = 10;'

send 'a', { :constraint => '_value == value ' }

}

}

}

Listing B.3: receive+constraints

external 'channel_a '

sts('process_a ') {

var 'value ', :integer , 0

channel('channel_a ') {

stimulus 'a', {'_value ' => :integer}

}

state 'start '

receive 'a', { :constraint => '_value > 0', :update => 'value = _value;' }

constraint 'value > 5'

constraint 'value < 10'

}
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Listing B.4: receive+constraints+different

external 'channel_a '

sts('process_a ') {

var 'value ', :integer , 0

channel('channel_a ') {

stimulus 'a', {'_value ' => :integer}

}

state 'start '

choice {

o { receive 'a', { :constraint => '_value > 0',

:update => 'value = _value;' }}

o { receive 'a', { :constraint => '_value > 12 && _value < 100',

:update => 'value = _value + 2;' }}

}

optionally {

constraint 'value > 10'

}

goto 'start '

}

Listing B.5: sends_sum_of_values+virtual

external 'channel_a '

sts('process_a ') {

var 'value1 ', :integer , 0

var 'value2 ', :integer , 0

channel('channel_a ') {

stimulus 'a', {'_value ' => :integer}

stimulus 'b', {'_value ' => :integer}

response 'c', {'_sum' => :integer}

}

state 'start '

repeat {

o {

receive 'a', { :constraint => '_value > 0',

:update => 'value1 = _value;' }

receive 'b', { :constraint => '_value > 0',

:update => 'value2 = _value;' }

optionally {

constraint 'value1 >= 5 && value2 >= 5'

constraint 'value1 + value2 > 10'

send 'c', { :constraint => '_sum == value1 + value2 ' }

}

update 'value1 = 0; value2 = 0;'

}

}

}
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Listing B.6: sends_sum_of_values+lazy

external 'channel_a '

sts('process_a ') {

var 'value1 ', :integer , 0

var 'value2 ', :integer , 0

var 'sum', :integer , 0

channel('channel_a ') {

stimulus 'a', {'_value ' => :integer}

stimulus 'b', {'_value ' => :integer}

response 'c', {'_sum' => :integer}

}

state 'start '

repeat {

o {

receive 'a', { :constraint => '_value > 0',

:update => 'value1 = _value;' }

receive 'b', { :constraint => '_value > 0',

:update => 'value2 = _value;' }

constraint 'value1 > 3'

update 'sum = value1 + value2;'

optionally {

constraint 'sum > 10'

send 'c', { :constraint => '_sum == sum' }

}

}

}

}

Listing B.7: constrained_receive

external 'channel_a '

sts('process_a ') {

var 'value ', :integer , 0

channel('channel_a ') {

stimulus 'a', {'_value ' => :integer}

response 'b', {'_value ' => :integer}

}

state 'start '

repeat {

o {

receive 'a', { :constraint => '_value > 0 && _value < 100',

:update => 'value = _value;' }

optionally {

constraint 'value > 10'

constraint 'value < 100'

send 'b', { :constraint => '_value == value ' }

}

}

}

}
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Listing B.8: minimal_values

external 'channel_a '

sts('process_a ') {

var 'value ', :integer , 0

channel('channel_a ') {

stimulus 'a', {'_value ' => :integer}

}

state 'start '

repeat {

o {

receive 'a', { :constraint => '_value > 0',

:update => 'value = _value;' }

choice {

o { constraint 'value == 1' }

o { constraint 'value == 2' }

}

}

}

}
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Appendix C

Task Assignment Successor

C.1 Installation
The recommended operation system is any recent version of Linux. Early experiments have shown
that LTSmin’s version of divine is difficult to compile and install on Mac OS X. The prototype has
been developed and tested within an Arch Linux installation that is running as a virtual machine
on top of a Mac OS X machine.

To install the prototype, perform the following instructions:

1. Ensure that a recent version of git1 is installed. Version 1.8.3.4 is known to work.

2. Ensure that LTSmin’s version of the DiVinE model checker2 is installed and is within $PATH

available as divine.

3. Ensure that there is a VPN connection to the Axini internal network.

4. Within the appropriate folder, execute the commands that are shown in listing C.1

Listing C.1: The command needed to download and install the prototype source code.

> git gitolite@git.axini.com:students/dberk

> cd dberk

> bundle install

The prototype should now be installed. Use the following steps to determine if all installation
steps were successful. The commands are executed from the root folder of the dberk git repository
within a standard bash session.

• Check if the bundle is correctly installed:
> cat test/cookbook/checking_age.sts

| bundle exec bin/sts2dve > /tmp/checking_age.dve

The result should be a non-empty DVE file that is located at /tmp/checking_age.dve

• Check if the LTSmin version of divine has been correctly compiled and installed with:
> divine compile --ltsmin /tmp/checking_age.dve

If the command was executed successfully, then there should be two files located within the
dberk root folder named and checking_age.dve.cpp and checking_age.dve2C. The former
file is the C++ source code that, when compiled to a shared object, produces the latter file.
If divine claims that --ltsmin is an unknown option, then the wrong version of divine is
placed within $PATH.

• Check if the entire prototype works. The result of the following execution should be similar
to the result shown in C.2.

> bundle exec cat spec/models/normalizeexpressions/sends_sum_of_values.sts |

bin/closemodel | bin/sts2dve | bin/checkmodel

1http://git-scm.com/
2http://fmt.cs.utwente.nl/tools/ltsmin/#secx
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name description
annotate Translate the Axini STS to an internal representation used by the prototype

and then annotate the elements with important keywords to guide future
transformations.

fix Remove the errors that were introduced by Axini::STSParser (see section 5.6).
normalize Remove any redundant transitions, states and minimize the sts with a

bisimilarity minimization algorithm (see section 5.6).
close Check if the model can be closed, then close the model.
create_env Normalization the constraint expressions and generate the necessary counterprocess

constraint expressions (see section 5.8).
dve Restructure the model to allow a DVE translation (see section 5.7)

Table C.1: Several transformation recipes within the prototype.

• Finally, execute all rspec unit tests with:
> bundle exec rspec

It is expected that one test should fail, but the failure of this specific test unit is inconse-
quential and can be ignored.

Listing C.2: The expected result when model checking sends_sum_of_values.sts

Success

DVE: /tmp/kxPJF3oHXCw.dve

> dve2lts -seq -d /tmp/kxPJF3oHXCw.dve

dve2lts -seq: Precompiled divine module initialized

dve2lts -seq: loading model from /tmp/kxPJF3oHXCw.dve

dve2lts -seq: length is 5, there are 12 groups

dve2lts -seq: There are 14 state labels and 0 edge labels

dve2lts -seq: got initial state

dve2lts -seq: state space 9 levels , 13 states 21 transitions

C.2 Source code overview
An overview of the important folders that contain the source code is shown in figure C.1.
The most important architectural design pattern that is used within the prototype is the
recipe. The different transformations that are applied to the symbolic transition system pro-
duced by the Axini::STSParser are collected into recipes and table C.1 lists the most im-
portant of these. They are either stored in recipestore.rb, or loaded dynamically as in
spec/dberk/printer/stsprinter_spec.rb. Each transformation accepts an sts model, and out-
puts an sts model that can be immediately inserted into the next transformation in the recipe. A
recipe is thus a collection of transformations that are applied sequentially to a symbolic transition
system.

C.3 Technical issues
Following is a list of some significant technical issues that may need to be resolved.

• Several bugs cause the prototype to terminate prematurely. The prototype source code
contains 93 different STS models and listing C.2 shows how much of these cause of the four
important applications to crash. To obtain the list of these troublesome model files, execute
dberk/bin/crashedfiles.

• The version of Axini::STSParser that is used by the prototype is outdated, but the newer ver-
sions have a different interface. The prototype cannot benefit from the more recent bugfixes
until it it modified to work with the most recent interface.

• Different from what was documented in section 5.7, the DVE restructuring transformation
inserts a single tmp process variable for every received interaction variable. This needs to be
altered so that only a single tmp variable is used for single-valued messages, or a set of tmp
variable for multi-valued messages.
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dberk/

bin/ : Prototype binaries: see section 5.3 for a list

lib/

etc/ : Büchi automaton generator, see section 4.2.1

ontology/ : All important class definitions from which the

internal sts representation is constructed

printer/ : Printer code for DVE, STS and raw

recipes/ : All sts transformations and the recipestore

sts-engine-interface/ : Wrapper for Axini::STSParser

utils/ : Utilities used during model closing, etc

spec/

dberk/ : rspec files for testing the prototype

models/ : Models that are used by the rspec unit tests

test/ : Some STS models used for testing

Gemfile : Configuration file for the package dependencies

Figure C.1: Directory tree for the prototype source code.

command crashing STS files
sts2sts 0/93
sts2dve 0/93
sts2raw 0/93

closemodel 22/93

Table C.2: The number of crashing STS models for each command.

• Different from what was documented in section 5.8.1, the implemented model closer scope
test doesn’t check for the datatype of the variables. This module needs to be altered so that
an exception is thrown when a model has non-N0 variables.

• The implemented bisimilarity minimization algorithm is too slow. Use the Paige-Tarjan
implementation and rewrite in C if still necessary.

• Many of the transformations that are contained within the recipes are too slow. Locate the
bottlenecks and either rewrite the algorithms, or implement them in C.

C.4 Task assignment
• Fix the issues that are listed in sections C.3 and 7.1.1.

• Integrate the prototype into the Axini workflow by implementing the following features

– Add support for LTL and CTL formulas. See section C.4.1 for a starting point on how
this feature could be implemented.

– Translation of SUT requirements to LTL or CTL formulas.

– Parse the output of the modelchecker. If LTSmin finds a counterexample, then the
counterexample need to be generated and parsed. See listing 6.1 for the relevant in-
structions.

– Utilize multicore or distributed machines by using dve2lts-mc or dve2lts-dist when
such hardware is available.

– Utilize symbolic state space representation when the model is too large to be stored
explicitly with dve2lts-sym.

C.4.1 Support for LTL and possibly CTL
The LTL formulas that LTSmin accepts are denoted in a special syntax. For this syntax, see the
ltsmin-ltl manpage. As LTSmin combines all processes into a single state vector representation,
the variables that are referred to within an LTL formula are made to refer to the elements of the
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state vector. To prevent naming collision, their names are modified to include the name of their
enclosing process. To extend the prototype with support for LTL formulas, these formulas need to
be modified so that they are made to refer to the correct elements.

The current command that is used by the prototype, dve2lts-seq, only generates the state
space, and optionally checks for deadlocks when it is passed the -d flag. This program needs to
be replaced with dve2lts-mc, which exploits multiple cores and can check for deadlocks as well.
To enable CTL formulas, dve2lts-sym needs to be used instead as dve2lts-mc doesn’t seem to
be able to handle CTL.
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